Flexible Bayesian Last Layer Models Using Implicit Priors and Diffusion Posterior Sampling
- URL: http://arxiv.org/abs/2408.03746v1
- Date: Wed, 7 Aug 2024 12:59:58 GMT
- Title: Flexible Bayesian Last Layer Models Using Implicit Priors and Diffusion Posterior Sampling
- Authors: Jian Xu, Zhiqi Lin, Shigui Li, Min Chen, Junmei Yang, Delu Zeng, John Paisley,
- Abstract summary: We introduce a novel approach that combines diffusion techniques and implicit priors for variational learning of Bayesian last layer weights.
By delivering an explicit and computationally efficient variational lower bound, our method aims to augment the expressive abilities of BLL models.
- Score: 7.084307990641011
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian Last Layer (BLL) models focus solely on uncertainty in the output layer of neural networks, demonstrating comparable performance to more complex Bayesian models. However, the use of Gaussian priors for last layer weights in Bayesian Last Layer (BLL) models limits their expressive capacity when faced with non-Gaussian, outlier-rich, or high-dimensional datasets. To address this shortfall, we introduce a novel approach that combines diffusion techniques and implicit priors for variational learning of Bayesian last layer weights. This method leverages implicit distributions for modeling weight priors in BLL, coupled with diffusion samplers for approximating true posterior predictions, thereby establishing a comprehensive Bayesian prior and posterior estimation strategy. By delivering an explicit and computationally efficient variational lower bound, our method aims to augment the expressive abilities of BLL models, enhancing model accuracy, calibration, and out-of-distribution detection proficiency. Through detailed exploration and experimental validation, We showcase the method's potential for improving predictive accuracy and uncertainty quantification while ensuring computational efficiency.
Related papers
- Multivariate Bayesian Last Layer for Regression: Uncertainty Quantification and Disentanglement [4.137574627759939]
We present new Bayesian Last Layer models in the setting of multivariate regression under heteroscedastic noise.
We propose an optimization algorithm for parameter learning.
We show that the framework can be used to transfer a canonically trained deep neural network to new data domains with uncertainty-aware capability.
arXiv Detail & Related papers (2024-05-02T21:53:32Z) - Beyond mirkwood: Enhancing SED Modeling with Conformal Predictions [0.0]
We propose an advanced machine learning-based approach that enhances flexibility and uncertainty in SED fitting.
We incorporate conformalized quantile regression to convert point predictions into error bars, enhancing interpretability and reliability.
arXiv Detail & Related papers (2023-12-21T11:27:20Z) - Exploiting Diffusion Prior for Generalizable Dense Prediction [85.4563592053464]
Recent advanced Text-to-Image (T2I) diffusion models are sometimes too imaginative for existing off-the-shelf dense predictors to estimate.
We introduce DMP, a pipeline utilizing pre-trained T2I models as a prior for dense prediction tasks.
Despite limited-domain training data, the approach yields faithful estimations for arbitrary images, surpassing existing state-of-the-art algorithms.
arXiv Detail & Related papers (2023-11-30T18:59:44Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
We propose to include a calibration term directly into the training objective of the neural model.
By introducing a relaxation of the classical formulation of calibration error we enable end-to-end backpropagation.
It is directly applicable to existing computational pipelines allowing reliable black-box posterior inference.
arXiv Detail & Related papers (2023-10-20T10:20:45Z) - Beyond Deep Ensembles: A Large-Scale Evaluation of Bayesian Deep
Learning under Distribution Shift [19.945634052291542]
We evaluate modern BDL algorithms on real-world datasets from the WILDS collection containing challenging classification and regression tasks.
We compare the algorithms on a wide range of large, convolutional and transformer-based neural network architectures.
We provide the first systematic evaluation of BDL for fine-tuning large pre-trained models.
arXiv Detail & Related papers (2023-06-21T14:36:03Z) - An Energy-Based Prior for Generative Saliency [62.79775297611203]
We propose a novel generative saliency prediction framework that adopts an informative energy-based model as a prior distribution.
With the generative saliency model, we can obtain a pixel-wise uncertainty map from an image, indicating model confidence in the saliency prediction.
Experimental results show that our generative saliency model with an energy-based prior can achieve not only accurate saliency predictions but also reliable uncertainty maps consistent with human perception.
arXiv Detail & Related papers (2022-04-19T10:51:00Z) - Last Layer Marginal Likelihood for Invariance Learning [12.00078928875924]
We introduce a new lower bound to the marginal likelihood, which allows us to perform inference for a larger class of likelihood functions.
We work towards bringing this approach to neural networks by using an architecture with a Gaussian process in the last layer.
arXiv Detail & Related papers (2021-06-14T15:40:51Z) - Calibration and Uncertainty Quantification of Bayesian Convolutional
Neural Networks for Geophysical Applications [0.0]
It is common to incorporate the uncertainty of predictions such subsurface models should provide calibrated probabilities and the associated uncertainties in their predictions.
It has been shown that popular Deep Learning-based models are often miscalibrated, and due to their deterministic nature, provide no means to interpret the uncertainty of their predictions.
We compare three different approaches obtaining probabilistic models based on convolutional neural networks in a Bayesian formalism.
arXiv Detail & Related papers (2021-05-25T17:54:23Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
Probabilistic load forecasting (PLF) is a key component in the extended tool-chain required for efficient management of smart energy grids.
We propose a novel PLF approach, framed on Bayesian Mixture Density Networks.
To achieve reliable and computationally scalable estimators of the posterior distributions, both Mean Field variational inference and deep ensembles are integrated.
arXiv Detail & Related papers (2020-12-23T16:21:34Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Bayesian Deep Learning and a Probabilistic Perspective of Generalization [56.69671152009899]
We show that deep ensembles provide an effective mechanism for approximate Bayesian marginalization.
We also propose a related approach that further improves the predictive distribution by marginalizing within basins of attraction.
arXiv Detail & Related papers (2020-02-20T15:13:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.