Using a Distance Sensor to Detect Deviations in a Planar Surface
- URL: http://arxiv.org/abs/2408.03838v1
- Date: Wed, 7 Aug 2024 15:24:25 GMT
- Title: Using a Distance Sensor to Detect Deviations in a Planar Surface
- Authors: Carter Sifferman, William Sun, Mohit Gupta, Michael Gleicher,
- Abstract summary: We investigate methods for determining if a planar surface contains geometric deviations using only an instantaneous measurement from a miniature optical time-of-flight sensor.
Key to our method is to utilize the entirety of information encoded in raw time-of-flight data captured by off-the-shelf distance sensors.
We build an example application in which our method enables mobile robot obstacle avoidance over a wide field-of-view.
- Score: 20.15053198469424
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate methods for determining if a planar surface contains geometric deviations (e.g., protrusions, objects, divots, or cliffs) using only an instantaneous measurement from a miniature optical time-of-flight sensor. The key to our method is to utilize the entirety of information encoded in raw time-of-flight data captured by off-the-shelf distance sensors. We provide an analysis of the problem in which we identify the key ambiguity between geometry and surface photometrics. To overcome this challenging ambiguity, we fit a Gaussian mixture model to a small dataset of planar surface measurements. This model implicitly captures the expected geometry and distribution of photometrics of the planar surface and is used to identify measurements that are likely to contain deviations. We characterize our method on a variety of surfaces and planar deviations across a range of scenarios. We find that our method utilizing raw time-of-flight data outperforms baselines which use only derived distance estimates. We build an example application in which our method enables mobile robot obstacle and cliff avoidance over a wide field-of-view.
Related papers
- Learning Radio Environments by Differentiable Ray Tracing [56.40113938833999]
We introduce a novel gradient-based calibration method, complemented by differentiable parametrizations of material properties, scattering and antenna patterns.
We have validated our method using both synthetic data and real-world indoor channel measurements, employing a distributed multiple-input multiple-output (MIMO) channel sounder.
arXiv Detail & Related papers (2023-11-30T13:50:21Z) - Unlocking the Performance of Proximity Sensors by Utilizing Transient
Histograms [20.994250740256458]
We provide methods which recover planar scene geometry by utilizing the transient histograms captured by a class of close-range time-of-flight (ToF) distance sensor.
A transient histogram is a one dimensional temporal waveform which encodes the arrival time of photons incident on the ToF sensor.
We demonstrate a simple robotics application which uses our method to sense the distance to and slope of a planar surface from a sensor mounted on the end effector of a robot arm.
arXiv Detail & Related papers (2023-08-25T16:20:41Z) - Vanishing Point Estimation in Uncalibrated Images with Prior Gravity
Direction [82.72686460985297]
We tackle the problem of estimating a Manhattan frame.
We derive two new 2-line solvers, one of which does not suffer from singularities affecting existing solvers.
We also design a new non-minimal method, running on an arbitrary number of lines, to boost the performance in local optimization.
arXiv Detail & Related papers (2023-08-21T13:03:25Z) - The Drunkard's Odometry: Estimating Camera Motion in Deforming Scenes [79.00228778543553]
This dataset is the first large set of exploratory camera trajectories with ground truth inside 3D scenes.
Simulations in realistic 3D buildings lets us obtain a vast amount of data and ground truth labels.
We present a novel deformable odometry method, dubbed the Drunkard's Odometry, which decomposes optical flow estimates into rigid-body camera motion.
arXiv Detail & Related papers (2023-06-29T13:09:31Z) - Diffeomorphic Mesh Deformation via Efficient Optimal Transport for Cortical Surface Reconstruction [40.73187749820041]
Mesh deformation plays a pivotal role in many 3D vision tasks including dynamic simulations, rendering, and reconstruction.
A prevalent approach in current deep learning is the set-based approach which measures the discrepancy between two surfaces by comparing two randomly sampled point-clouds from the two meshes with Chamfer pseudo-distance.
We propose a novel metric for learning mesh deformation, defined by sliced Wasserstein distance on meshes represented as probability measures that generalize the set-based approach.
arXiv Detail & Related papers (2023-05-27T19:10:19Z) - Real-Time Simultaneous Localization and Mapping with LiDAR intensity [9.374695605941627]
We propose a novel real-time LiDAR intensity image-based simultaneous localization and mapping method.
Our method can run in real time with high accuracy and works well with illumination changes, low-texture, and unstructured environments.
arXiv Detail & Related papers (2023-01-23T03:59:48Z) - HSurf-Net: Normal Estimation for 3D Point Clouds by Learning Hyper
Surfaces [54.77683371400133]
We propose a novel normal estimation method called HSurf-Net, which can accurately predict normals from point clouds with noise and density variations.
Experimental results show that our HSurf-Net achieves the state-of-the-art performance on the synthetic shape dataset.
arXiv Detail & Related papers (2022-10-13T16:39:53Z) - Information Entropy Initialized Concrete Autoencoder for Optimal Sensor
Placement and Reconstruction of Geophysical Fields [58.720142291102135]
We propose a new approach to the optimal placement of sensors for reconstructing geophysical fields from sparse measurements.
We demonstrate our method on the two examples: (a) temperature and (b) salinity fields around the Barents Sea and the Svalbard group of islands.
We find out that the obtained optimal sensor locations have clear physical interpretation and correspond to the boundaries between sea currents.
arXiv Detail & Related papers (2022-06-28T12:43:38Z) - Fast and Robust Ground Surface Estimation from LIDAR Measurements using
Uniform B-Splines [3.337790639927531]
We propose a fast and robust method to estimate the ground surface from LIDAR measurements on an automated vehicle.
We model the estimation process as a robust LS optimization problem which can be reformulated as a linear problem.
We validate the approach on our research vehicle in real-world scenarios.
arXiv Detail & Related papers (2022-03-02T15:26:51Z) - Visual SLAM with Graph-Cut Optimized Multi-Plane Reconstruction [11.215334675788952]
This paper presents a semantic planar SLAM system that improves pose estimation and mapping using cues from an instance planar segmentation network.
While the mainstream approaches are using RGB-D sensors, employing a monocular camera with such a system still faces challenges such as robust data association and precise geometric model fitting.
arXiv Detail & Related papers (2021-08-09T18:16:08Z) - From Planes to Corners: Multi-Purpose Primitive Detection in Unorganized
3D Point Clouds [59.98665358527686]
We propose a new method for segmentation-free joint estimation of orthogonal planes.
Such unified scene exploration allows for multitudes of applications such as semantic plane detection or local and global scan alignment.
Our experiments demonstrate the validity of our approach in numerous scenarios from wall detection to 6D tracking.
arXiv Detail & Related papers (2020-01-21T06:51:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.