Embodied Neuromorphic Artificial Intelligence for Robotics: Perspectives, Challenges, and Research Development Stack
- URL: http://arxiv.org/abs/2404.03325v2
- Date: Thu, 12 Sep 2024 14:18:26 GMT
- Title: Embodied Neuromorphic Artificial Intelligence for Robotics: Perspectives, Challenges, and Research Development Stack
- Authors: Rachmad Vidya Wicaksana Putra, Alberto Marchisio, Fakhreddine Zayer, Jorge Dias, Muhammad Shafique,
- Abstract summary: Recent advances in neuromorphic computing with Spiking Neural Networks (SNN) have demonstrated the potential to enable the embodied intelligence for robotics.
This paper will discuss how we can enable embodied neuromorphic AI for robotic systems through our perspectives.
- Score: 7.253801704452419
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robotic technologies have been an indispensable part for improving human productivity since they have been helping humans in completing diverse, complex, and intensive tasks in a fast yet accurate and efficient way. Therefore, robotic technologies have been deployed in a wide range of applications, ranging from personal to industrial use-cases. However, current robotic technologies and their computing paradigm still lack embodied intelligence to efficiently interact with operational environments, respond with correct/expected actions, and adapt to changes in the environments. Toward this, recent advances in neuromorphic computing with Spiking Neural Networks (SNN) have demonstrated the potential to enable the embodied intelligence for robotics through bio-plausible computing paradigm that mimics how the biological brain works, known as "neuromorphic artificial intelligence (AI)". However, the field of neuromorphic AI-based robotics is still at an early stage, therefore its development and deployment for solving real-world problems expose new challenges in different design aspects, such as accuracy, adaptability, efficiency, reliability, and security. To address these challenges, this paper will discuss how we can enable embodied neuromorphic AI for robotic systems through our perspectives: (P1) Embodied intelligence based on effective learning rule, training mechanism, and adaptability; (P2) Cross-layer optimizations for energy-efficient neuromorphic computing; (P3) Representative and fair benchmarks; (P4) Low-cost reliability and safety enhancements; (P5) Security and privacy for neuromorphic computing; and (P6) A synergistic development for energy-efficient and robust neuromorphic-based robotics. Furthermore, this paper identifies research challenges and opportunities, as well as elaborates our vision for future research development toward embodied neuromorphic AI for robotics.
Related papers
- Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - A Review of Neuroscience-Inspired Machine Learning [58.72729525961739]
Bio-plausible credit assignment is compatible with practically any learning condition and is energy-efficient.
In this paper, we survey several vital algorithms that model bio-plausible rules of credit assignment in artificial neural networks.
We conclude by discussing the future challenges that will need to be addressed in order to make such algorithms more useful in practical applications.
arXiv Detail & Related papers (2024-02-16T18:05:09Z) - On the Emergence of Symmetrical Reality [51.21203247240322]
We introduce the symmetrical reality framework, which offers a unified representation encompassing various forms of physical-virtual amalgamations.
We propose an instance of an AI-driven active assistance service that illustrates the potential applications of symmetrical reality.
arXiv Detail & Related papers (2024-01-26T16:09:39Z) - How to Raise a Robot -- A Case for Neuro-Symbolic AI in Constrained Task
Planning for Humanoid Assistive Robots [4.286794014747407]
We explore the novel field of incorporating privacy, security, and access control constraints with robot task planning approaches.
We report preliminary results on the classical symbolic approach, deep-learned neural networks, and modern ideas using large language models as knowledge base.
arXiv Detail & Related papers (2023-12-14T11:09:50Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Towards Building AI-CPS with NVIDIA Isaac Sim: An Industrial Benchmark
and Case Study for Robotics Manipulation [18.392301524812645]
As a representative cyber-physical system (CPS), robotic manipulator has been widely adopted in various academic research and industrial processes.
Recent studies in robotics manipulation have started employing artificial intelligence (AI) approaches as controllers to achieve better adaptability and performance.
We propose a public industrial benchmark for robotics manipulation in this paper.
arXiv Detail & Related papers (2023-07-31T18:21:45Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - Leveraging dendritic properties to advance machine learning and
neuro-inspired computing [0.0]
Brain is a remarkably capable and efficient system.
Current artificial intelligence systems require vast resources for training while still struggling to compete in tasks that are trivial for biological agents.
Brain-inspired engineering has emerged as a promising new avenue for designing sustainable, next-generation AI systems.
arXiv Detail & Related papers (2023-06-13T09:07:49Z) - World Models and Predictive Coding for Cognitive and Developmental
Robotics: Frontiers and Challenges [51.92834011423463]
We focus on the two concepts of world models and predictive coding.
In neuroscience, predictive coding proposes that the brain continuously predicts its inputs and adapts to model its own dynamics and control behavior in its environment.
arXiv Detail & Related papers (2023-01-14T06:38:14Z) - Challenges and Opportunities of Edge AI for Next-Generation Implantable
BMIs [6.385006149689549]
We will review the emerging opportunities of on-chip AI for the next-generation implantable brain-machine interfaces (BMIs)
We will present algorithmic and IC design solutions to enable a new generation of AI-enhanced and high-channel-count BMIs.
arXiv Detail & Related papers (2022-04-04T12:47:07Z) - A toolbox for neuromorphic sensing in robotics [4.157415305926584]
We introduce a ROS (Robot Operating System) toolbox to encode and decode input signals coming from any type of sensor available on a robot.
This initiative is meant to stimulate and facilitate robotic integration of neuromorphic AI.
arXiv Detail & Related papers (2021-03-03T23:22:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.