論文の概要: Overcoming Brittleness in Pareto-Optimal Learning-Augmented Algorithms
- arxiv url: http://arxiv.org/abs/2408.04122v1
- Date: Wed, 7 Aug 2024 23:15:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-09 17:10:20.204432
- Title: Overcoming Brittleness in Pareto-Optimal Learning-Augmented Algorithms
- Title(参考訳): Pareto-Optimal Learning-Augmented Algorithm における脆さの克服
- Authors: Spyros Angelopoulos, Christoph Dürr, Alex Elenter, Yanni Lefki,
- Abstract要約: 本稿では,ユーザ特定プロファイルを用いて,アルゴリズムの性能のスムーズさを強制する新しいフレームワークを提案する。
我々は、この新しいアプローチを、よく研究されたオンライン問題、すなわち片道取引問題に適用する。
- 参考スコア(独自算出の注目度): 6.131022957085439
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The study of online algorithms with machine-learned predictions has gained considerable prominence in recent years. One of the common objectives in the design and analysis of such algorithms is to attain (Pareto) optimal tradeoffs between the consistency of the algorithm, i.e., its performance assuming perfect predictions, and its robustness, i.e., the performance of the algorithm under adversarial predictions. In this work, we demonstrate that this optimization criterion can be extremely brittle, in that the performance of Pareto-optimal algorithms may degrade dramatically even in the presence of imperceptive prediction error. To remedy this drawback, we propose a new framework in which the smoothness in the performance of the algorithm is enforced by means of a user-specified profile. This allows us to regulate the performance of the algorithm as a function of the prediction error, while simultaneously maintaining the analytical notion of consistency/robustness tradeoffs, adapted to the profile setting. We apply this new approach to a well-studied online problem, namely the one-way trading problem. For this problem, we further address another limitation of the state-of-the-art Pareto-optimal algorithms, namely the fact that they are tailored to worst-case, and extremely pessimistic inputs. We propose a new Pareto-optimal algorithm that leverages any deviation from the worst-case input to its benefit, and introduce a new metric that allows us to compare any two Pareto-optimal algorithms via a dominance relation.
- Abstract(参考訳): 近年,機械学習予測を用いたオンラインアルゴリズムの研究が盛んに行われている。
このようなアルゴリズムの設計と分析における一般的な目的の1つは、アルゴリズムの整合性、すなわち完全な予測を仮定する性能と、敵の予測の下でのアルゴリズムのパフォーマンスとの(パレート)最適トレードオフを達成することである。
本研究では,この最適化基準が極めて脆弱であることを示し,パレート最適化アルゴリズムの性能が,知覚的予測誤差の存在下においても劇的に低下することを示した。
この欠点を解消するために,ユーザ特定プロファイルを用いてアルゴリズムの性能のスムーズさを強制する新しいフレームワークを提案する。
これにより、プロファイル設定に適合した一貫性/ロバスト性トレードオフの解析的概念を同時に維持しつつ、予測誤差の関数としてのアルゴリズムの性能を制御できる。
我々は、この新しいアプローチを、よく研究されたオンライン問題、すなわち片道取引問題に適用する。
この問題に対して、最先端のPareto-Optimalアルゴリズムの別の制限、すなわち、最悪のケースに適合しているという事実、そして非常に悲観的な入力に対処する。
我々は、最悪の入力からその利点への偏差を生かした新しいパレート最適化アルゴリズムを提案し、支配関係を通じて2つのパレート最適化アルゴリズムを比較するための新しい指標を提案する。
関連論文リスト
- Approximation Algorithms for Combinatorial Optimization with Predictions [3.7235228254732524]
従来のアルゴリズムの近似保証よりも高い精度で予測を行う。
我々のアルゴリズムは、完璧な予測が得られたときに最適解を生成する。
この種の問題全体に対して最適なアプローチを示すが、個々の問題の特定の構造的特性を利用して改善された境界を求める可能性はある。
論文 参考訳(メタデータ) (2024-11-25T17:31:34Z) - Deterministic Trajectory Optimization through Probabilistic Optimal Control [3.2771631221674333]
離散時間決定論的有限水平非線形最適制御問題に対する2つの新しいアルゴリズムを提案する。
どちらのアルゴリズムも確率論的最適制御として知られる新しい理論パラダイムにインスパイアされている。
このアルゴリズムの適用により、決定論的最適ポリシーに収束する確率的ポリシーの定点が得られることを示す。
論文 参考訳(メタデータ) (2024-07-18T09:17:47Z) - Learning Predictions for Algorithms with Predictions [49.341241064279714]
予測器を学習するアルゴリズムに対して,一般的な設計手法を導入する。
オンライン学習の手法を応用して、敵のインスタンスに対して学習し、堅牢性と一貫性のあるトレードオフを調整し、新しい統計的保証を得る。
両部マッチング,ページマイグレーション,スキーレンタル,ジョブスケジューリングの手法を解析することにより,学習アルゴリズムの導出におけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-02-18T17:25:43Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
決定論的条件と決定論的条件の両方において、二段階最適化問題を解決するアルゴリズムのクラスについて検討する。
厳密な勾配の推定を補正するために、ウォームスタート戦略を利用する。
このフレームワークを用いることで、これらのアルゴリズムは勾配の偏りのない推定値にアクセス可能な手法の計算複雑性と一致することを示す。
論文 参考訳(メタデータ) (2021-11-29T15:10:09Z) - On the Optimality of Batch Policy Optimization Algorithms [106.89498352537682]
バッチポリシー最適化は、環境と対話する前に既存のデータをポリシー構築に活用することを検討する。
信頼調整インデックスアルゴリズムは楽観的,悲観的,中立的いずれであってもミニマックス最適であることを示す。
最適値予測の本来の難易度を考慮した新しい重み付き最小値基準を提案する。
論文 参考訳(メタデータ) (2021-04-06T05:23:20Z) - Double Coverage with Machine-Learned Advice [100.23487145400833]
オンラインの基本的な$k$-serverの問題を学習強化環境で研究する。
我々のアルゴリズムは任意の k に対してほぼ最適の一貫性-破壊性トレードオフを達成することを示す。
論文 参考訳(メタデータ) (2021-03-02T11:04:33Z) - Benchmarking Simulation-Based Inference [5.3898004059026325]
確率的モデリングの最近の進歩は、確率の数値的評価を必要としないシミュレーションに基づく推論アルゴリズムを多数もたらした。
推論タスクと適切なパフォーマンス指標を備えたベンチマークを,アルゴリズムの初期選択とともに提供する。
性能指標の選択は重要であり、最先端のアルゴリズムでさえ改善の余地があり、逐次推定によりサンプリング効率が向上することがわかった。
論文 参考訳(メタデータ) (2021-01-12T18:31:22Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
複数の次元に沿った最先端技術を改善する新しいアルゴリズムを提案する。
非文脈線形帯域の特別な場合において、学習地平線に対して最小限の最適性を確立する。
論文 参考訳(メタデータ) (2020-10-23T09:12:47Z) - The Primal-Dual method for Learning Augmented Algorithms [10.2730668356857]
我々は、オンラインアルゴリズムの原始二重法を拡張し、次のアクションについてオンラインアルゴリズムにアドバイスする予測を組み込む。
我々のアルゴリズムは、予測が正確である場合にも、予測が誤解を招くとき、適切な保証を維持しながら、どのオンラインアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-10-22T11:58:47Z) - Optimal Robustness-Consistency Trade-offs for Learning-Augmented Online
Algorithms [85.97516436641533]
機械学習予測を取り入れたオンラインアルゴリズムの性能向上の課題について検討する。
目標は、一貫性と堅牢性の両方を備えたアルゴリズムを設計することだ。
機械学習予測を用いた競合解析のための非自明な下界の最初のセットを提供する。
論文 参考訳(メタデータ) (2020-10-22T04:51:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。