ComKD-CLIP: Comprehensive Knowledge Distillation for Contrastive Language-Image Pre-traning Model
- URL: http://arxiv.org/abs/2408.04145v3
- Date: Wed, 21 Aug 2024 01:36:27 GMT
- Title: ComKD-CLIP: Comprehensive Knowledge Distillation for Contrastive Language-Image Pre-traning Model
- Authors: Yifan Chen, Xiaozhen Qiao, Zhe Sun, Xuelong Li,
- Abstract summary: We propose ComKD-CLIP: Comprehensive Knowledge Distillation for Contrastive Language-Image Pre-traning Model.
It distills the knowledge from a large teacher CLIP model into a smaller student model, ensuring comparable performance with significantly reduced parameters.
EduAttention explores the cross-relationships between text features extracted by the teacher model and image features extracted by the student model.
- Score: 49.587821411012705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contrastive Language-Image Pre-training (CLIP) models excel in integrating semantic information between images and text through contrastive learning techniques. It has achieved remarkable performance in various multimodal tasks. However, the deployment of large CLIP models is hindered in resource-limited environments, while smaller models frequently fail to meet the performance benchmarks required for practical applications. In this paper, we propose a novel approach, ComKD-CLIP: Comprehensive Knowledge Distillation for Contrastive Language-Image Pre-traning Model, which aims to comprehensively distill the knowledge from a large teacher CLIP model into a smaller student model, ensuring comparable performance with significantly reduced parameters. ComKD-CLIP is composed of two key mechanisms: Image Feature Alignment (IFAlign) and Educational Attention (EduAttention). IFAlign makes the image features extracted by the student model closely match those extracted by the teacher model, enabling the student to learn teacher's knowledge of extracting image features. EduAttention explores the cross-relationships between text features extracted by the teacher model and image features extracted by the student model, enabling the student model to learn how the teacher model integrates text-image features. In addition, ComKD-CLIP can refine the knowledge distilled from IFAlign and EduAttention by leveraging the text-image feature fusion results of the teacher model, ensuring the student model accurately absorbs the teacher's knowledge. Extensive experiments conducted on 11 datasets have demonstrated the superiority of the proposed method.
Related papers
- Interactive DualChecker for Mitigating Hallucinations in Distilling Large Language Models [7.632217365130212]
Large Language Models (LLMs) have demonstrated exceptional capabilities across various machine learning (ML) tasks.
These models can produce hallucinations, particularly in domains with incomplete knowledge.
We introduce DualChecker, an innovative framework designed to mitigate hallucinations and improve the performance of both teacher and student models.
arXiv Detail & Related papers (2024-08-22T12:04:04Z) - CLEFT: Language-Image Contrastive Learning with Efficient Large Language Model and Prompt Fine-Tuning [4.004641316826348]
We introduce a novel language-image Contrastive Learning method with an Efficient large language model and prompt Fine-Tuning (CLEFT)
Our method demonstrates state-of-the-art performance on multiple chest X-ray and mammography datasets.
The proposed parameter efficient framework can reduce the total trainable model size by 39% and reduce the trainable language model to only 4% compared with the current BERT encoder.
arXiv Detail & Related papers (2024-07-30T17:57:32Z) - Advanced Multimodal Deep Learning Architecture for Image-Text Matching [33.8315200009152]
Image-text matching is a key multimodal task that aims to model the semantic association between images and text as a matching relationship.
We introduce an advanced multimodal deep learning architecture, which combines the high-level abstract representation ability of deep neural networks for visual information with the advantages of natural language processing models for text semantic understanding.
Experiments show that compared with existing image-text matching models, the optimized new model has significantly improved performance on a series of benchmark data sets.
arXiv Detail & Related papers (2024-06-13T08:32:24Z) - MCAD: Multi-teacher Cross-modal Alignment Distillation for efficient image-text retrieval [7.233106731197739]
We propose a Multi-teacher Cross-modality Alignment Distillation (MCAD) technique to integrate the advantages of single- and dual-stream models.
We implement a lightweight CLIP model on Snapdragon/Dimensity chips with only $sim$100M running memory and $sim$8.0ms search latency.
arXiv Detail & Related papers (2023-10-30T15:38:43Z) - Distilling Knowledge from Text-to-Image Generative Models Improves Visio-Linguistic Reasoning in CLIP [57.53087077735303]
We introduce SDS-CLIP, a lightweight and sample-efficient distillation method to enhance CLIP's compositional visio-linguistic reasoning.
Our approach fine-tunes CLIP using a distillation objective borrowed from large text-to-image generative models like Stable-Diffusion.
On the challenging Winoground benchmark, SDS-CLIP improves the visio-linguistic performance of various CLIP models by up to 7%, while on the ARO dataset, it boosts performance by up to 3%.
arXiv Detail & Related papers (2023-07-18T13:10:11Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
This paper presents UniDiff, a unified multi-modal model that integrates image-text contrastive learning (ITC), text-conditioned image synthesis learning (IS), and reciprocal semantic consistency modeling (RSC)
UniDiff demonstrates versatility in both multi-modal understanding and generative tasks.
arXiv Detail & Related papers (2023-06-01T15:39:38Z) - Non-Contrastive Learning Meets Language-Image Pre-Training [145.6671909437841]
We study the validity of non-contrastive language-image pre-training (nCLIP)
We introduce xCLIP, a multi-tasking framework combining CLIP and nCLIP, and show that nCLIP aids CLIP in enhancing feature semantics.
arXiv Detail & Related papers (2022-10-17T17:57:46Z) - Prompt-based Learning for Unpaired Image Captioning [86.44188293709307]
Unpaired Image Captioning (UIC) has been developed to learn image descriptions from unaligned vision-language sample pairs.
Recent successes of Vision-Language Pre-Trained Models (VL-PTMs) have triggered the development of prompt-based learning.
We present in this paper a novel scheme based on prompt to train the UIC model, making best use of the powerful generalization ability.
arXiv Detail & Related papers (2022-05-26T03:13:43Z) - Oracle Teacher: Leveraging Target Information for Better Knowledge
Distillation of CTC Models [10.941519846908697]
We introduce a new type of teacher model for connectionist temporal classification ( CTC)-based sequence models, namely Oracle Teacher.
Since the Oracle Teacher learns a more accurate CTC alignment by referring to the target information, it can provide the student with more optimal guidance.
Based on a many-to-one mapping property of the CTC algorithm, we present a training strategy that can effectively prevent the trivial solution.
arXiv Detail & Related papers (2021-11-05T14:14:05Z) - Object Relational Graph with Teacher-Recommended Learning for Video
Captioning [92.48299156867664]
We propose a complete video captioning system including both a novel model and an effective training strategy.
Specifically, we propose an object relational graph (ORG) based encoder, which captures more detailed interaction features to enrich visual representation.
Meanwhile, we design a teacher-recommended learning (TRL) method to make full use of the successful external language model (ELM) to integrate the abundant linguistic knowledge into the caption model.
arXiv Detail & Related papers (2020-02-26T15:34:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.