EdgeShield: A Universal and Efficient Edge Computing Framework for Robust AI
- URL: http://arxiv.org/abs/2408.04181v1
- Date: Thu, 8 Aug 2024 02:57:55 GMT
- Title: EdgeShield: A Universal and Efficient Edge Computing Framework for Robust AI
- Authors: Duo Zhong, Bojing Li, Xiang Chen, Chenchen Liu,
- Abstract summary: We propose an edge framework design to enable universal and efficient detection of adversarial attacks.
This framework incorporates an attention-based adversarial detection methodology and a lightweight detection network formation.
The results indicate an impressive 97.43% F-score can be achieved, demonstrating the framework's proficiency in detecting adversarial attacks.
- Score: 8.688432179052441
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing prevalence of adversarial attacks on Artificial Intelligence (AI) systems has created a need for innovative security measures. However, the current methods of defending against these attacks often come with a high computing cost and require back-end processing, making real-time defense challenging. Fortunately, there have been remarkable advancements in edge-computing, which make it easier to deploy neural networks on edge devices. Building upon these advancements, we propose an edge framework design to enable universal and efficient detection of adversarial attacks. This framework incorporates an attention-based adversarial detection methodology and a lightweight detection network formation, making it suitable for a wide range of neural networks and can be deployed on edge devices. To assess the effectiveness of our proposed framework, we conducted evaluations on five neural networks. The results indicate an impressive 97.43% F-score can be achieved, demonstrating the framework's proficiency in detecting adversarial attacks. Moreover, our proposed framework also exhibits significantly reduced computing complexity and cost in comparison to previous detection methods. This aspect is particularly beneficial as it ensures that the defense mechanism can be efficiently implemented in real-time on-edge devices.
Related papers
- Edge-Only Universal Adversarial Attacks in Distributed Learning [49.546479320670464]
In this work, we explore the feasibility of generating universal adversarial attacks when an attacker has access to the edge part of the model only.
Our approach shows that adversaries can induce effective mispredictions in the unknown cloud part by leveraging key features on the edge side.
Our results on ImageNet demonstrate strong attack transferability to the unknown cloud part.
arXiv Detail & Related papers (2024-11-15T11:06:24Z) - A Hybrid Training-time and Run-time Defense Against Adversarial Attacks in Modulation Classification [35.061430235135155]
Defense mechanism based on both training-time and run-time defense techniques for protecting machine learning-based radio signal (modulation) classification against adversarial attacks.
Considering a white-box scenario and real datasets, we demonstrate that our proposed techniques outperform existing state-of-the-art technologies.
arXiv Detail & Related papers (2024-07-09T12:28:38Z) - Improving the Robustness of Object Detection and Classification AI models against Adversarial Patch Attacks [2.963101656293054]
We analyze attack techniques and propose a robust defense approach.
We successfully reduce model confidence by over 20% using adversarial patch attacks that exploit object shape, texture and position.
Our inpainting defense approach significantly enhances model resilience, achieving high accuracy and reliable localization despite the adversarial attacks.
arXiv Detail & Related papers (2024-03-04T13:32:48Z) - Attention-Based Real-Time Defenses for Physical Adversarial Attacks in
Vision Applications [58.06882713631082]
Deep neural networks exhibit excellent performance in computer vision tasks, but their vulnerability to real-world adversarial attacks raises serious security concerns.
This paper proposes an efficient attention-based defense mechanism that exploits adversarial channel-attention to quickly identify and track malicious objects in shallow network layers.
It also introduces an efficient multi-frame defense framework, validating its efficacy through extensive experiments aimed at evaluating both defense performance and computational cost.
arXiv Detail & Related papers (2023-11-19T00:47:17Z) - Towards Adversarial Realism and Robust Learning for IoT Intrusion
Detection and Classification [0.0]
The Internet of Things (IoT) faces tremendous security challenges.
The increasing threat posed by adversarial attacks restates the need for reliable defense strategies.
This work describes the types of constraints required for an adversarial cyber-attack example to be realistic.
arXiv Detail & Related papers (2023-01-30T18:00:28Z) - RobustSense: Defending Adversarial Attack for Secure Device-Free Human
Activity Recognition [37.387265457439476]
We propose a novel learning framework, RobustSense, to defend common adversarial attacks.
Our method works well on wireless human activity recognition and person identification systems.
arXiv Detail & Related papers (2022-04-04T15:06:03Z) - Segmentation Fault: A Cheap Defense Against Adversarial Machine Learning [0.0]
Recently published attacks against deep neural networks (DNNs) have stressed the importance of methodologies and tools to assess the security risks of using this technology in critical systems.
We propose a new technique for defending deep neural network classifiers, and convolutional ones in particular.
Our defense is cheap in the sense that it requires less power despite a small cost to pay in terms of detection accuracy.
arXiv Detail & Related papers (2021-08-31T04:56:58Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems.
This paper proposes a self-supervised adversarial training mechanism in the input space.
It provides significant robustness against the textbfunseen adversarial attacks.
arXiv Detail & Related papers (2020-06-08T20:42:39Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.