Segmentation Fault: A Cheap Defense Against Adversarial Machine Learning
- URL: http://arxiv.org/abs/2108.13617v1
- Date: Tue, 31 Aug 2021 04:56:58 GMT
- Title: Segmentation Fault: A Cheap Defense Against Adversarial Machine Learning
- Authors: Doha Al Bared and Mohamed Nassar
- Abstract summary: Recently published attacks against deep neural networks (DNNs) have stressed the importance of methodologies and tools to assess the security risks of using this technology in critical systems.
We propose a new technique for defending deep neural network classifiers, and convolutional ones in particular.
Our defense is cheap in the sense that it requires less power despite a small cost to pay in terms of detection accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently published attacks against deep neural networks (DNNs) have stressed
the importance of methodologies and tools to assess the security risks of using
this technology in critical systems. Efficient techniques for detecting
adversarial machine learning helps establishing trust and boost the adoption of
deep learning in sensitive and security systems. In this paper, we propose a
new technique for defending deep neural network classifiers, and convolutional
ones in particular. Our defense is cheap in the sense that it requires less
computation power despite a small cost to pay in terms of detection accuracy.
The work refers to a recently published technique called ML-LOO. We replace the
costly pixel by pixel leave-one-out approach of ML-LOO by adopting
coarse-grained leave-one-out. We evaluate and compare the efficiency of
different segmentation algorithms for this task. Our results show that a large
gain in efficiency is possible, even though penalized by a marginal decrease in
detection accuracy.
Related papers
- Performance evaluation of Machine learning algorithms for Intrusion Detection System [0.40964539027092917]
This paper focuses on intrusion detection systems (IDSs) analysis using Machine Learning (ML) techniques.
We analyze the KDD CUP-'99' intrusion detection dataset used for training and validating ML models.
arXiv Detail & Related papers (2023-10-01T06:35:37Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - Backdoor Attack Detection in Computer Vision by Applying Matrix
Factorization on the Weights of Deep Networks [6.44397009982949]
We introduce a novel method for backdoor detection that extracts features from pre-trained DNN's weights.
In comparison to other detection techniques, this has a number of benefits, such as not requiring any training data.
Our method outperforms the competing algorithms in terms of efficiency and is more accurate, helping to ensure the safe application of deep learning and AI.
arXiv Detail & Related papers (2022-12-15T20:20:18Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Efficient Few-Shot Object Detection via Knowledge Inheritance [62.36414544915032]
Few-shot object detection (FSOD) aims at learning a generic detector that can adapt to unseen tasks with scarce training samples.
We present an efficient pretrain-transfer framework (PTF) baseline with no computational increment.
We also propose an adaptive length re-scaling (ALR) strategy to alleviate the vector length inconsistency between the predicted novel weights and the pretrained base weights.
arXiv Detail & Related papers (2022-03-23T06:24:31Z) - Targeted Attack against Deep Neural Networks via Flipping Limited Weight
Bits [55.740716446995805]
We study a novel attack paradigm, which modifies model parameters in the deployment stage for malicious purposes.
Our goal is to misclassify a specific sample into a target class without any sample modification.
By utilizing the latest technique in integer programming, we equivalently reformulate this BIP problem as a continuous optimization problem.
arXiv Detail & Related papers (2021-02-21T03:13:27Z) - Towards Adversarial-Resilient Deep Neural Networks for False Data
Injection Attack Detection in Power Grids [7.351477761427584]
False data injection attacks (FDIAs) pose a significant security threat to power system state estimation.
Recent studies have proposed machine learning (ML) techniques, particularly deep neural networks (DNNs)
arXiv Detail & Related papers (2021-02-17T22:26:34Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - Data-efficient Weakly-supervised Learning for On-line Object Detection
under Domain Shift in Robotics [24.878465999976594]
Several object detection methods have been proposed in the literature, the vast majority based on Deep Convolutional Neural Networks (DCNNs)
These methods have important limitations for robotics: Learning solely on off-line data may introduce biases, and prevents adaptation to novel tasks.
In this work, we investigate how weakly-supervised learning can cope with these problems.
arXiv Detail & Related papers (2020-12-28T16:36:11Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.