論文の概要: DC Algorithm for Estimation of Sparse Gaussian Graphical Models
- arxiv url: http://arxiv.org/abs/2408.04206v1
- Date: Thu, 8 Aug 2024 04:05:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-09 16:40:03.150604
- Title: DC Algorithm for Estimation of Sparse Gaussian Graphical Models
- Title(参考訳): スパースガウス図形モデル推定のための直流アルゴリズム
- Authors: Tomokaze Shiratori, Yuichi Takano,
- Abstract要約: グラフィカルモデルのスパース推定のための合成アルゴリズムを開発した。
提案手法は,既存の手法と同等か,あるいは優れている結果に関して,特に有利であることを示す。
- 参考スコア(独自算出の注目度): 3.291862617649511
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sparse estimation for Gaussian graphical models is a crucial technique for making the relationships among numerous observed variables more interpretable and quantifiable. Various methods have been proposed, including graphical lasso, which utilizes the $\ell_1$ norm as a regularization term, as well as methods employing non-convex regularization terms. However, most of these methods approximate the $\ell_0$ norm with convex functions. To estimate more accurate solutions, it is desirable to treat the $\ell_0$ norm directly as a regularization term. In this study, we formulate the sparse estimation problem for Gaussian graphical models using the $\ell_0$ norm and propose a method to solve this problem using the Difference of Convex functions Algorithm (DCA). Specifically, we convert the $\ell_0$ norm constraint into an equivalent largest-$K$ norm constraint, reformulate the constrained problem into a penalized form, and solve it using the DC algorithm (DCA). Furthermore, we designed an algorithm that efficiently computes using graphical lasso. Experimental results with synthetic data show that our method yields results that are equivalent to or better than existing methods. Comparisons of model learning through cross-validation confirm that our method is particularly advantageous in selecting true edges.
- Abstract(参考訳): ガウス図形モデルのスパース推定は、多くの観測変数間の関係をより解釈可能で定量化する重要な手法である。
正規化項として$\ell_1$ノルムを用いるグラフィカルラッソや、非凸正規化項を用いるメソッドなど、様々な手法が提案されている。
しかし、これらの手法のほとんどは凸関数を持つ$\ell_0$ノルムを近似する。
より正確な解を推定するには、$\ell_0$ノルムを直接正規化項として扱うことが望ましい。
本研究では,$\ell_0$ノルムを用いてガウス図形モデルのスパース推定問題を定式化し,凸関数の差分アルゴリズム(DCA)を用いてこの問題を解決する方法を提案する。
具体的には、$\ell_0$のノルム制約を等価な最大値である$K$のノルム制約に変換し、制約された問題をペナル化形式に変換し、DCアルゴリズム(DCA)を用いて解決する。
さらに,グラフィカルラッソを用いて効率的に計算するアルゴリズムを設計した。
合成データを用いた実験結果から,本手法は既存手法と同等以上の結果が得られることがわかった。
クロスバリデーションによるモデル学習の比較により,本手法が真のエッジを選択する上で特に有利であることが確認された。
関連論文リスト
- Maximum a Posteriori Inference for Factor Graphs via Benders' Decomposition [0.38233569758620056]
一般ベイズ因子モデルにおける最大a-ポストペリオーリ推定法を提案する。
ベイジアン・ガウス混合モデルと潜在ディリクレ割り当てに対するMAP推定アルゴリズムを導出する。
論文 参考訳(メタデータ) (2024-10-24T19:57:56Z) - Sobolev Space Regularised Pre Density Models [51.558848491038916]
本研究では,ソボレフ法則の正則化に基づく非パラメトリック密度推定法を提案する。
この方法は統計的に一貫したものであり、帰納的検証モデルを明確かつ一貫したものにしている。
論文 参考訳(メタデータ) (2023-07-25T18:47:53Z) - Efficient Graph Laplacian Estimation by Proximal Newton [12.05527862797306]
グラフ学習問題は、精度行列の最大極大推定(MLE)として定式化することができる。
いくつかのアルゴリズム的特徴を利用した効率的な解法を得るための2次手法を開発した。
論文 参考訳(メタデータ) (2023-02-13T15:13:22Z) - Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation
Constrained Optimization [88.0031283949404]
多くの実世界の問題は複雑な非機能的制約を持ち、多くのデータポイントを使用する。
提案手法は,従来最もよく知られた結果で既存手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-12-19T14:48:54Z) - Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming [53.63469275932989]
制約付き非線形最適化問題のオンライン統計的推測を考察する。
これらの問題を解決するために、逐次二次計画法(StoSQP)を適用する。
論文 参考訳(メタデータ) (2022-05-27T00:34:03Z) - $\ell_1$-norm constrained multi-block sparse canonical correlation
analysis via proximal gradient descent [0.0]
マルチブロックCCA問題を解くための近似勾配降下アルゴリズムを提案する。
得られた推定値は、適切な仮定の下では、レート最適であることが示される。
また,複数の固有ベクトルを逐次推定するデフレ手順についても述べる。
論文 参考訳(メタデータ) (2022-01-14T03:35:01Z) - Learning Sparse Graph with Minimax Concave Penalty under Gaussian Markov
Random Fields [51.07460861448716]
本稿では,データから学ぶための凸解析フレームワークを提案する。
三角凸分解はその上部に対応する変換によって保証されることを示す。
論文 参考訳(メタデータ) (2021-09-17T17:46:12Z) - An algorithmic view of $\ell_2$ regularization and some path-following
algorithms [7.6146285961466]
凸損失関数に対する$ell$-regularized Solution pathと通常の微分方程式(ODE)の解との等価性を確立する。
この等価性は、溶液経路を勾配降下のハイブリッドの流れと見なすことができ、ニュートン法は経験的損失に適用できることを示した。
ホモトピー法と数値ODE解法に基づく新しい経路追従アルゴリズムを提案し,解経路を数値的に近似する。
論文 参考訳(メタデータ) (2021-07-07T16:00:13Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
ヒルベルト空間の既知の低次元部分空間を探索することにより、確率観測の集合を用いて近似解を計算する手法を検討する。
本稿では,線形関数近似を用いた政策評価問題に対する時間差分学習手法の誤差を正確に評価する方法について述べる。
論文 参考訳(メタデータ) (2020-12-09T20:19:32Z) - Does the $\ell_1$-norm Learn a Sparse Graph under Laplacian Constrained
Graphical Models? [13.572602792770288]
ラプラシアン制約ガウス図形モデルの下でグラフを学習する問題を考察する。
我々は、大きな正規化パラメータが驚くほど完全なグラフ、すなわちエッジで接続されたすべてのエッジにつながることを示した。
論文 参考訳(メタデータ) (2020-06-26T12:06:10Z) - Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
Tighter Generalization Bounds [72.63031036770425]
有界非次元最適化のための差分プライベート(DP)アルゴリズムを提案する。
標準勾配法に対する経験的優位性について,2つの一般的なディープラーニング手法を実証する。
論文 参考訳(メタデータ) (2020-06-24T06:01:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。