VN-Net: Vision-Numerical Fusion Graph Convolutional Network for Sparse Spatio-Temporal Meteorological Forecasting
- URL: http://arxiv.org/abs/2404.16037v1
- Date: Fri, 26 Jan 2024 12:41:57 GMT
- Title: VN-Net: Vision-Numerical Fusion Graph Convolutional Network for Sparse Spatio-Temporal Meteorological Forecasting
- Authors: Yutong Xiong, Xun Zhu, Ming Wu, Weiqing Li, Fanbin Mo, Chuang Zhang, Bin Zhang,
- Abstract summary: VN-Net is the first attempt to introduce GCN method to utilize multi-modal data for better handling sparse-temporal meteorological forecasting.
VN-Net outperforms state-of-the-art by a significant margin on mean absolute error (MAE) and root mean square error (RMSE) for temperature, relative humidity, and forecasting.
- Score: 12.737085738169164
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sparse meteorological forecasting is indispensable for fine-grained weather forecasting and deserves extensive attention. Recent studies have highlighted the potential of spatio-temporal graph convolutional networks (ST-GCNs) in predicting numerical data from ground weather stations. However, as one of the highest fidelity and lowest latency data, the application of the vision data from satellites in ST-GCNs remains unexplored. There are few studies to demonstrate the effectiveness of combining the above multi-modal data for sparse meteorological forecasting. Towards this objective, we introduce Vision-Numerical Fusion Graph Convolutional Network (VN-Net), which mainly utilizes: 1) Numerical-GCN (N-GCN) to adaptively model the static and dynamic patterns of spatio-temporal numerical data; 2) Vision-LSTM Network (V-LSTM) to capture multi-scale joint channel and spatial features from time series satellite images; 4) a GCN-based decoder to generate hourly predictions of specified meteorological factors. As far as we know, VN-Net is the first attempt to introduce GCN method to utilize multi-modal data for better handling sparse spatio-temporal meteorological forecasting. Our experiments on Weather2k dataset show VN-Net outperforms state-of-the-art by a significant margin on mean absolute error (MAE) and root mean square error (RMSE) for temperature, relative humidity, and visibility forecasting. Furthermore, we conduct interpretation analysis and design quantitative evaluation metrics to assess the impact of incorporating vision data.
Related papers
- Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
We design a conceptual fine-grained causal model named TBN Granger Causality.
Second, we propose an end-to-end deep generative model called TacSas, which discovers TBN Granger Causality in a generative manner.
We test TacSas on climate benchmark ERA5 for climate forecasting and the extreme weather benchmark of NOAA for extreme weather alerts.
arXiv Detail & Related papers (2024-08-08T06:47:21Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Short-term Precipitation Forecasting in The Netherlands: An Application
of Convolutional LSTM neural networks to weather radar data [0.0]
The research exploits the combination of Convolutional Neural Networks (CNNs) layers for spatial pattern recognition and LSTM network layers for modelling temporal sequences.
The model was trained and validated on weather radar data from the Netherlands.
Results indicate high accuracy in predicting the direction and intensity of precipitation movements.
arXiv Detail & Related papers (2023-12-02T18:13:45Z) - FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective [48.00240550685946]
Current state-of-the-art graph neural network (GNN)-based forecasting methods usually require both graph networks (e.g., GCN) and temporal networks (e.g., LSTM) to capture inter-series (spatial) dynamics and intra-series (temporal) dependencies, respectively.
We propose a novel Fourier Graph Neural Network (FourierGNN) by stacking our proposed Fourier Graph Operator (FGO) to perform matrix multiplications in Fourier space.
Our experiments on seven datasets have demonstrated superior performance with higher efficiency and fewer parameters compared with state-of-the-
arXiv Detail & Related papers (2023-11-10T17:13:26Z) - WeatherGNN: Exploiting Meteo- and Spatial-Dependencies for Local Numerical Weather Prediction Bias-Correction [11.10401300641113]
We propose WeatherGNN, a local NWP bias-correction method that exploits meteorological dependencies and spatial dependencies under the guidance of domain knowledge.
Our experimental results on two real-world datasets demonstrate that WeatherGNN achieves the state-of-the-art performance, outperforming the best baseline with an average of 4.75 % on RMSE.
arXiv Detail & Related papers (2023-10-09T08:33:19Z) - Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
Deep neural networks offer an alternative paradigm for modeling weather conditions.
MetNet-3 learns from both dense and sparse data sensors and makes predictions up to 24 hours ahead for precipitation, wind, temperature and dew point.
MetNet-3 has a high temporal and spatial resolution, respectively, up to 2 minutes and 1 km as well as a low operational latency.
arXiv Detail & Related papers (2023-06-06T07:07:54Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - HiSTGNN: Hierarchical Spatio-temporal Graph Neural Networks for Weather
Forecasting [13.317147032467306]
We propose a novel Graph Hierarchical Spatio-Temporal Neural Network (HiSTGNN) to model cross-regional-temporal correlations among meteorological variables in multiple stations.
Experimental results on three real-world meteorological datasets demonstrate the superior performance of HiSTGNN beyond 7 baselines.
It reduces the errors by 4.2% to 11.6% especially compared to state-of-the-art weather forecasting method.
arXiv Detail & Related papers (2022-01-22T17:30:46Z) - SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet
Architecture [5.28539620288341]
We show that it is possible to produce an accurate precipitation nowcast using a data-driven neural network approach.
We evaluate our approaches on a real-life datasets using precipitation maps from the region of the Netherlands and binary images of cloud coverage of France.
arXiv Detail & Related papers (2020-07-08T20:33:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.