論文の概要: MoC-System: Efficient Fault Tolerance for Sparse Mixture-of-Experts Model Training
- arxiv url: http://arxiv.org/abs/2408.04307v2
- Date: Wed, 23 Oct 2024 12:08:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 12:22:45.563049
- Title: MoC-System: Efficient Fault Tolerance for Sparse Mixture-of-Experts Model Training
- Title(参考訳): MoC-System:Sparse Mixture-of-Experts Model Trainingのための効率的なフォールトトレランス
- Authors: Weilin Cai, Le Qin, Jiayi Huang,
- Abstract要約: 本研究では,分散学習システムで発生する多数のチェックポイントシャードをオーケストレーションするMixture-of-Checkpoint System (MoC-System)を提案する。
MoC-Systemは、新しい部分エキスパートチェックポイント(PEC)機構を備えており、これはアルゴリズムシステムの共同設計であり、専門家の選ばれたサブセットを戦略的に保存する。
We build MoC-System on the Megatron-DeepSpeed framework, achieve a 98.9% down of overhead for each checkpointing process。
- 参考スコア(独自算出の注目度): 4.4345088842995395
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As large language models continue to scale up, distributed training systems have expanded beyond 10k nodes, intensifying the importance of fault tolerance. Checkpoint has emerged as the predominant fault tolerance strategy, with extensive studies dedicated to optimizing its efficiency. However, the advent of the sparse Mixture-of-Experts (MoE) model presents new challenges due to the substantial increase in model size, despite comparable computational demands to dense models. In this work, we propose the Mixture-of-Checkpoint System (MoC-System) to orchestrate the vast array of checkpoint shards produced in distributed training systems. MoC-System features a novel Partial Experts Checkpointing (PEC) mechanism, an algorithm-system co-design that strategically saves a selected subset of experts, effectively reducing the MoE checkpoint size to levels comparable with dense models. Incorporating hybrid parallel strategies, MoC-System involves fully sharded checkpointing strategies to evenly distribute the workload across distributed ranks. Furthermore, MoC-System introduces a two-level checkpointing management method that asynchronously handles in-memory snapshots and persistence processes. We build MoC-System upon the Megatron-DeepSpeed framework, achieving up to a 98.9% reduction in overhead for each checkpointing process compared to the original method, during MoE model training with ZeRO-2 data parallelism and expert parallelism. Additionally, extensive empirical analyses substantiate that our methods enhance efficiency while maintaining comparable model accuracy, even achieving an average accuracy increase of 1.08% on downstream tasks.
- Abstract(参考訳): 大きな言語モデルがスケールアップを続けるにつれて、分散トレーニングシステムは10kノードを超えて拡張され、フォールトトレランスの重要性が増している。
チェックポイントは耐障害性の主要な戦略として現れ、その効率を最適化するための広範な研究がなされている。
しかし,Sparse Mixture-of-Experts (MoE) モデルの出現は,高密度モデルに対する計算要求に匹敵するものの,モデルサイズが大幅に増加するために新たな課題を提起する。
本研究では,分散学習システムで発生する多数のチェックポイントシャードをオーケストレーションするMixture-of-Checkpoint System (MoC-System)を提案する。
MoC-Systemは、新しい部分エキスパートチェックポイント機構(PEC)を特徴としている。これはアルゴリズムシステムの共同設計で、選択した専門家のサブセットを戦略的に保存し、MoEチェックポイントのサイズを高密度モデルに匹敵するレベルに効果的に縮小する。
ハイブリッド並列戦略を取り入れたMoC-Systemは、分散階級間でワークロードを均等に分散する完全シャードなチェックポイント戦略を含む。
さらに、MoC-Systemはメモリ内スナップショットと永続化プロセスを非同期に処理する2段階のチェックポイント管理手法を導入している。
We build MoC-System on the Megatron-DeepSpeed framework, achieved a 98.9% down the overhead for each checkpointing process than the original method, during MoE model training with ZeRO-2 data parallelism and expert parallelism。
さらに,本手法は,下流タスクにおける平均精度が1.08%向上しても,同等のモデル精度を維持しながら効率を向上させることを実証的分析により実証した。
関連論文リスト
- Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
本稿では、事前学習された高密度LCMをより小さなMoEモデルに変換する新しいフレームワークRead-MEを提案する。
当社のアプローチでは,専門家の抽出にアクティベーション空間を用いる。
Read-MEは、同様のスケールの他の人気のあるオープンソース高密度モデルよりも優れています。
論文 参考訳(メタデータ) (2024-10-24T19:48:51Z) - Enhancing Stability for Large Language Models Training in Constrained Bandwidth Networks [8.049237611207113]
我々は、階層分割(hpZ)方式における競合状態が、数十億のパラメータを持つモデルのトレーニング時に不安定を引き起こす可能性を示す。
次に、これらの収束問題に対処し、競争力のあるトレーニング効率を維持しながら、分割アルゴリズムの変更を提案する。
このアルゴリズムは、98%のスループットを持つ大型モデルの堅牢なトレーニングを可能にし、収束の質を犠牲にすることなく、モデルのトレーニング速度を向上する。
論文 参考訳(メタデータ) (2024-06-28T01:46:10Z) - Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion [53.33473557562837]
大規模深層ニューラルネットワークに対する多目的最適化問題を解くことは、損失ランドスケープの複雑さと高価な計算コストのために難しい課題である。
本稿では,専門家(MoE)をベースとしたモデル融合を用いて,この問題を実用的でスケーラブルに解決する手法を提案する。
特殊な単一タスクモデルの重みをまとめることで、MoEモジュールは複数の目的間のトレードオフを効果的に捉えることができる。
論文 参考訳(メタデータ) (2024-06-14T07:16:18Z) - Accelerating Multilevel Markov Chain Monte Carlo Using Machine Learning Models [0.0]
大規模問題に対するマルチレベルマルコフ・チェイン・モンテカルロ(MCMC)サンプリングを高速化するための効率的な手法を提案する。
提案したサンプルの低コストな評価には,低忠実度機械学習モデルを用いる。
本手法は地下水流の標準ベンチマーク推論問題において実証された。
論文 参考訳(メタデータ) (2024-05-18T05:13:11Z) - LocMoE: A Low-Overhead MoE for Large Language Model Training [13.153904674287546]
本稿では,部分的なノード間通信をノード内通信に変換することで,負荷バランスと局所性を組み合わせた新しいルーティング手法を提案する。
提案されたLocMoEは、古典的なルータと比較して、エポックあたりのトレーニング時間を12.68%削減して22.24%に短縮した。
論文 参考訳(メタデータ) (2024-01-25T03:36:39Z) - MGAS: Multi-Granularity Architecture Search for Trade-Off Between Model
Effectiveness and Efficiency [10.641875933652647]
我々は,多粒度アーキテクチャサーチ(MGAS)を導入し,効率的かつ効率的なニューラルネットワークを探索する。
各粒度レベル固有の離散化関数を学習し、進化したアーキテクチャに従って単位残率を適応的に決定する。
CIFAR-10、CIFAR-100、ImageNetの大規模な実験により、MGASはモデル性能とモデルサイズとのトレードオフを改善するために、他の最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-10-23T16:32:18Z) - Scalable and Efficient MoE Training for Multitask Multilingual Models [55.987536562357086]
我々は,MoEモデルを数兆のパラメータに効率的にスケールできるシステムを開発した。
また,MoEサンプルの効率を向上させるための新たなトレーニング手法を提案し,時間効率を向上させるために専門家の刈り取り戦略を活用する。
50言語で100億のパラメータで訓練されたモデルは、機械翻訳(MT)および多言語自然言語生成タスクにおける最先端のパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2021-09-22T00:57:46Z) - Covert Model Poisoning Against Federated Learning: Algorithm Design and
Optimization [76.51980153902774]
フェデレーテッド・ラーニング(FL)はパラメータ伝達中にFLモデルに対する外部攻撃に対して脆弱である。
本稿では,最先端の防御アグリゲーション機構に対処する有効なMPアルゴリズムを提案する。
実験の結果,提案したCMPアルゴリズムは,既存の攻撃機構よりも効果的で,かなり優れていることが示された。
論文 参考訳(メタデータ) (2021-01-28T03:28:18Z) - Coded Stochastic ADMM for Decentralized Consensus Optimization with Edge
Computing [113.52575069030192]
セキュリティ要件の高いアプリケーションを含むビッグデータは、モバイルデバイスやドローン、車両など、複数の異種デバイスに収集され、格納されることが多い。
通信コストとセキュリティ要件の制限のため、核融合センターにデータを集約するのではなく、分散的に情報を抽出することが最重要となる。
分散エッジノードを介してデータを局所的に処理するマルチエージェントシステムにおいて,モデルパラメータを学習する問題を考える。
分散学習モデルを開発するために,乗算器アルゴリズムの最小バッチ交互方向法(ADMM)のクラスについて検討した。
論文 参考訳(メタデータ) (2020-10-02T10:41:59Z) - Scaling Distributed Deep Learning Workloads beyond the Memory Capacity
with KARMA [58.040931661693925]
冗長な再計算とアウト・オブ・コアの手法を組み合わせた戦略を提案する。
最先端のアウト・オブ・コア手法を用いて,6種類のモデルで平均1.22倍の高速化を実現した。
我々のデータ並列化ソリューションは,Megatron-LMやTurning-NLGといった大規模モデルのトレーニングにおいて,複雑なハイブリッドモデル並列性よりも優れる。
論文 参考訳(メタデータ) (2020-08-26T07:24:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。