論文の概要: Deep Transfer Learning for Kidney Cancer Diagnosis
- arxiv url: http://arxiv.org/abs/2408.04318v1
- Date: Thu, 8 Aug 2024 08:52:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-09 16:08:12.630632
- Title: Deep Transfer Learning for Kidney Cancer Diagnosis
- Title(参考訳): 腎癌診断のためのDeep Transfer Learning
- Authors: Yassine Habchi, Hamza Kheddar, Yassine Himeur, Abdelkrim Boukabou, Shadi Atalla, Wathiq Mansoor, Hussain Al-Ahmad,
- Abstract要約: 移動学習(TL)は、他の異なる事前学習データに基づいて印象的な結果が得られる。
本報告では, 腎癌診断のためのDL-based TL フレームワークについて, 著者の知る限り, 総括的調査を行った。
- 参考スコア(独自算出の注目度): 2.87932876218736
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many incurable diseases prevalent across global societies stem from various influences, including lifestyle choices, economic conditions, social factors, and genetics. Research predominantly focuses on these diseases due to their widespread nature, aiming to decrease mortality, enhance treatment options, and improve healthcare standards. Among these, kidney disease stands out as a particularly severe condition affecting men and women worldwide. Nonetheless, there is a pressing need for continued research into innovative, early diagnostic methods to develop more effective treatments for such diseases. Recently, automatic diagnosis of Kidney Cancer has become an important challenge especially when using deep learning (DL) due to the importance of training medical datasets, which in most cases are difficult and expensive to obtain. Furthermore, in most cases, algorithms require data from the same domain and a powerful computer with efficient storage capacity. To overcome this issue, a new type of learning known as transfer learning (TL) has been proposed that can produce impressive results based on other different pre-trained data. This paper presents, to the best of the authors' knowledge, the first comprehensive survey of DL-based TL frameworks for kidney cancer diagnosis. This is a strong contribution to help researchers understand the current challenges and perspectives of this topic. Hence, the main limitations and advantages of each framework are identified and detailed critical analyses are provided. Looking ahead, the article identifies promising directions for future research. Moving on, the discussion is concluded by reflecting on the pivotal role of TL in the development of precision medicine and its effects on clinical practice and research in oncology.
- Abstract(参考訳): 世界的な社会で流行する多くの不治の病気は、生活様式の選択、経済状況、社会的要因、遺伝学など様々な影響を受けている。
研究は主に、死を減らし、治療オプションを強化し、医療基準を改善することを目的として、これらの病気に焦点を絞っている。
このうち、腎臓病は世界中で男性や女性に特に重篤な症状である。
それにもかかわらず、これらの疾患に対するより効果的な治療法を開発するために、革新的な早期診断方法に関する継続的な研究の必要性が高まっている。
近年,医学データセットのトレーニングの重要性から,特にディープラーニング(DL)を用いた場合,腎癌の自動診断が重要な課題となっている。
さらに、ほとんどの場合、アルゴリズムは同じドメインからのデータと効率的なストレージ容量を持つ強力なコンピュータを必要とする。
この問題を克服するために、他の様々な事前学習データに基づいて印象的な結果が得られる、トランスファーラーニング(TL)と呼ばれる新しいタイプの学習法が提案されている。
本報告では, 腎癌診断のためのDL-based TL フレームワークについて, 著者の知る限り, 総括的調査を行った。
これは、研究者がこのトピックの現在の課題と視点を理解するのに役立つ強力な貢献である。
したがって、各フレームワークの主な制限と利点が特定され、詳細な批判分析が提供される。
この記事は、今後の研究の今後の方向性を明らかにしている。
この議論は、精密医療の発展におけるTLの役割と、その臨床実践と腫瘍学研究への影響を反映して進められている。
関連論文リスト
- The Role of Explainable AI in Revolutionizing Human Health Monitoring [0.0]
説明可能なAI(XAI)は、より明確で、患者のケアを大幅に改善する可能性がある。
本稿では,パーキンソン病,脳卒中,うつ病,癌,心臓病,アルツハイマー病などの慢性疾患について概説する。
この論文は、ヒトの健康モニタリングにおけるXAIの課題と今後の研究機会を批判的に評価することで締めくくられる。
論文 参考訳(メタデータ) (2024-09-11T15:31:40Z) - Assessing and Enhancing Large Language Models in Rare Disease Question-answering [64.32570472692187]
本稿では,レアな疾患の診断におけるLarge Language Models (LLMs) の性能を評価するために,レアな疾患問合せデータセット(ReDis-QA)を導入する。
ReDis-QAデータセットでは1360の高品質な質問応答ペアを収集し,205の稀な疾患をカバーした。
その後、いくつかのオープンソースのLCMをベンチマークし、希少疾患の診断がこれらのモデルにとって重要な課題であることを示した。
実験の結果,ReCOPは,ReDis-QAデータセット上でのLCMの精度を平均8%向上できることがわかった。
論文 参考訳(メタデータ) (2024-08-15T21:09:09Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
本稿では,マルチモーダルデータ(例えば,薬物分子,疾患コード,テキスト,分類・数値的特徴)と臨床治験設計における8つの重要な予測課題をカバーするAIreadyデータセットを精巧にキュレートした。
データセットのユーザビリティと信頼性を確保するため、各タスクに基本的な検証方法を提供する。
このようなオープンアクセスデータセットが利用可能になることは、臨床試験設計のための高度なAIアプローチの開発を促進することを期待する。
論文 参考訳(メタデータ) (2024-06-30T09:13:10Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
本研究は, スマートフォンで撮影した画像と本質的な臨床および人口統計情報を統合することで, 皮膚病変を分類する新しいマルチモーダル手法を提案する。
この手法の特徴は、超高解像度画像予測に焦点を当てた補助的なタスクの統合である。
PAD-UFES20データセットを用いて,様々なディープラーニングアーキテクチャを用いて実験を行った。
論文 参考訳(メタデータ) (2024-02-16T05:16:20Z) - From Data to Insights: A Comprehensive Survey on Advanced Applications
in Thyroid Cancer Research [18.42107238058712]
甲状腺癌における機械学習応用の包括的分類法を体系的に検討し,検討を行った。
合計758の関連研究が特定され、精査された。
この領域で直面する重要な課題を強調し、今後の研究機会を提案する。
論文 参考訳(メタデータ) (2024-01-08T08:10:37Z) - Deep Neural Decision Forest: A Novel Approach for Predicting Recovery or Decease of Patients [1.0874223087191939]
本研究の目的は,深層学習アルゴリズムが患者の道徳を予測できるかどうかを検討することである。
臨床およびRT-PCRがどちらが信頼性が高いかを予測するための予測に与える影響について検討した。
その結果, RT-PCRを用いない臨床単独が, 80%の精度で最も効果的な診断方法であることが示唆された。
論文 参考訳(メタデータ) (2023-11-23T11:21:40Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
関連疾患に対するラベル付きデータの不足は、正確な診断にとって大きな課題となる。
本稿では,診断エージェントの学習を指導するための事前知識を導入する,新しい深層強化学習フレームワークを提案する。
提案手法の性能はNIHX-ray 14とCheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-06-02T01:46:31Z) - COVID-Net Biochem: An Explainability-driven Framework to Building
Machine Learning Models for Predicting Survival and Kidney Injury of COVID-19
Patients from Clinical and Biochemistry Data [66.43957431843324]
我々は、機械学習モデルを構築するための汎用的で説明可能なフレームワークであるCOVID-Net Biochemを紹介する。
この枠組みを用いて、新型コロナウイルス患者の生存率と、入院中に急性腎不全を発症する可能性を予測する。
論文 参考訳(メタデータ) (2022-04-24T07:38:37Z) - Machine learning based disease diagnosis: A comprehensive review [0.0]
このレビューでは、機械学習(ML)とディープラーニング(DL)が、多くの病気の早期発見にどのように利用されているかを説明します。
1216の出版物に関する文献学的研究は、最も多作な著者、国、組織、そして最も引用された記事を決定するために行われた。
このレビューでは、機械学習ベースの疾患診断(MLBDD)の最新動向とアプローチをまとめている。
論文 参考訳(メタデータ) (2021-12-31T16:25:23Z) - Heterogeneity Loss to Handle Intersubject and Intrasubject Variability
in Cancer [11.440201348567681]
深層学習(DL)モデルは、医学領域において顕著な結果を示している。
これらのAI手法は、開発途上国に安価な医療ソリューションとして大きな支援を提供することができる。
この研究は、そのような血液がん診断の応用に焦点をあてている。
論文 参考訳(メタデータ) (2020-03-06T16:16:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。