Robustness investigation of cross-validation based quality measures for model assessment
- URL: http://arxiv.org/abs/2408.04391v2
- Date: Fri, 4 Oct 2024 09:41:36 GMT
- Title: Robustness investigation of cross-validation based quality measures for model assessment
- Authors: Thomas Most, Lars Gräning, Sebastian Wolff,
- Abstract summary: The prediction quality of a machine learning model is evaluated based on a cross-validation approach.
The presented measures quantify the amount of explained variation in the model prediction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper the accuracy and robustness of quality measures for the assessment of machine learning models are investigated. The prediction quality of a machine learning model is evaluated model-independent based on a cross-validation approach, where the approximation error is estimated for unknown data. The presented measures quantify the amount of explained variation in the model prediction. The reliability of these measures is assessed by means of several numerical examples, where an additional data set for the verification of the estimated prediction error is available. Furthermore, the confidence bounds of the presented quality measures are estimated and local quality measures are derived from the prediction residuals obtained by the cross-validation approach.
Related papers
- Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Rigorous Assessment of Model Inference Accuracy using Language
Cardinality [5.584832154027001]
We develop a systematic approach that minimizes bias and uncertainty in model accuracy assessment by replacing statistical estimation with deterministic accuracy measures.
We experimentally demonstrate the consistency and applicability of our approach by assessing the accuracy of models inferred by state-of-the-art inference tools.
arXiv Detail & Related papers (2022-11-29T21:03:26Z) - The Implicit Delta Method [61.36121543728134]
In this paper, we propose an alternative, the implicit delta method, which works by infinitesimally regularizing the training loss of uncertainty.
We show that the change in the evaluation due to regularization is consistent for the variance of the evaluation estimator, even when the infinitesimal change is approximated by a finite difference.
arXiv Detail & Related papers (2022-11-11T19:34:17Z) - Calibration tests beyond classification [30.616624345970973]
Most supervised machine learning tasks are subject to irreducible prediction errors.
Probabilistic predictive models address this limitation by providing probability distributions that represent a belief over plausible targets.
Calibrated models guarantee that the predictions are neither over- nor under-confident.
arXiv Detail & Related papers (2022-10-21T09:49:57Z) - Prediction Errors for Penalized Regressions based on Generalized
Approximate Message Passing [0.0]
We derive the forms of estimators for the prediction errors: $C_p$ criterion, information criteria, and leave-one-out cross validation (LOOCV) error.
In the framework of GAMP, we show that the information criteria can be expressed by using the variance of the estimates.
arXiv Detail & Related papers (2022-06-26T09:42:39Z) - Forecast Evaluation in Large Cross-Sections of Realized Volatility [0.0]
We evaluate the predictive accuracy of the model based on the augmented cross-section when forecasting Realized volatility.
We study the sensitivity of forecasts to the model specification by incorporating a measurement error correction as well as cross-sectional jump component measures.
arXiv Detail & Related papers (2021-12-09T13:19:09Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - The Aleatoric Uncertainty Estimation Using a Separate Formulation with
Virtual Residuals [51.71066839337174]
Existing methods can quantify the error in the target estimation, but they tend to underestimate it.
We propose a new separable formulation for the estimation of a signal and of its uncertainty, avoiding the effect of overfitting.
We demonstrate that the proposed method outperforms a state-of-the-art technique for signal and uncertainty estimation.
arXiv Detail & Related papers (2020-11-03T12:11:27Z) - Performance metrics for intervention-triggering prediction models do not
reflect an expected reduction in outcomes from using the model [71.9860741092209]
Clinical researchers often select among and evaluate risk prediction models.
Standard metrics calculated from retrospective data are only related to model utility under certain assumptions.
When predictions are delivered repeatedly throughout time, the relationship between standard metrics and utility is further complicated.
arXiv Detail & Related papers (2020-06-02T16:26:49Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
We demonstrate that predictive uncertainty estimated by the current methods does not highly correlate with prediction error.
We propose a novel method that estimates the target labels and magnitude of the prediction error in two steps.
arXiv Detail & Related papers (2020-02-13T15:55:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.