Enhancing accuracy of uncertainty estimation in appearance-based gaze tracking with probabilistic evaluation and calibration
- URL: http://arxiv.org/abs/2501.14894v3
- Date: Mon, 17 Mar 2025 21:23:20 GMT
- Title: Enhancing accuracy of uncertainty estimation in appearance-based gaze tracking with probabilistic evaluation and calibration
- Authors: Qiaojie Zheng, Jiucai Zhang, Xiaoli Zhang,
- Abstract summary: Uncertainty in appearance-based gaze tracking is critical for ensuring reliable downstream applications.<n>Current uncertainty-aware approaches adopt probabilistic models to acquire uncertainties by following distributions in the training dataset.<n>We propose a correction strategy based on probability calibration to mitigate biases in the estimated uncertainties of the trained models.
- Score: 13.564919425738163
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurately knowing uncertainties in appearance-based gaze tracking is critical for ensuring reliable downstream applications. Due to the lack of individual uncertainty labels, current uncertainty-aware approaches adopt probabilistic models to acquire uncertainties by following distributions in the training dataset. Without regulations, this approach lets the uncertainty model build biases and overfits the training data, leading to poor performance when deployed. We first presented a strict proper evaluation metric from the probabilistic perspective based on comparing the coverage probability between prediction and observation to provide quantitative evaluation for better assessment on the inferred uncertainties. We then proposed a correction strategy based on probability calibration to mitigate biases in the estimated uncertainties of the trained models. Finally, we demonstrated the effectiveness of the correction strategy with experiments performed on two popular gaze estimation datasets with distinctive image characteristics caused by data collection settings.
Related papers
- Active operator learning with predictive uncertainty quantification for partial differential equations [6.519088943440059]
We develop a method for uncertainty quantification in deep operator networks (DeepONets) using predictive uncertainty estimates calibrated to model errors observed during training.
The uncertainty framework operates using a single network, in contrast to existing ensemble approaches, and introduces minimal overhead during training and inference.
We evaluate the uncertainty-equipped models on a series of partial differential equation (PDE) problems, and show that the model predictions are unbiased, non-skewed, and accurately reproduce solutions to the PDEs.
arXiv Detail & Related papers (2025-03-05T04:48:14Z) - Probabilistic Modeling of Disparity Uncertainty for Robust and Efficient Stereo Matching [61.73532883992135]
We propose a new uncertainty-aware stereo matching framework.
We adopt Bayes risk as the measurement of uncertainty and use it to separately estimate data and model uncertainty.
arXiv Detail & Related papers (2024-12-24T23:28:20Z) - Parametric $ρ$-Norm Scaling Calibration [8.583311125489942]
Output uncertainty indicates whether the probabilistic properties reflect objective characteristics of the model output.<n>We introduce a post-processing parametric calibration method, $rho$-Norm Scaling, which expands the calibrator expression and mitigates overconfidence due to excessive amplitude.
arXiv Detail & Related papers (2024-12-19T10:42:11Z) - Combining Priors with Experience: Confidence Calibration Based on Binomial Process Modeling [3.4580564656984736]
Existing confidence calibration methods mostly use statistical techniques to estimate the calibration curve from data.<n>A new calibration metric ($TCE_bpm$), which leverages the estimated calibration curve to estimate the true calibration error (TCE), is designed.<n>The effectiveness of our calibration method and metric are verified in real-world and simulated data.
arXiv Detail & Related papers (2024-12-14T03:04:05Z) - Optimizing Estimators of Squared Calibration Errors in Classification [2.3020018305241337]
We propose a mean-squared error-based risk that enables the comparison and optimization of estimators of squared calibration errors.
Our approach advocates for a training-validation-testing pipeline when estimating a calibration error.
arXiv Detail & Related papers (2024-10-09T15:58:06Z) - Uncertainty for Active Learning on Graphs [70.44714133412592]
Uncertainty Sampling is an Active Learning strategy that aims to improve the data efficiency of machine learning models.
We benchmark Uncertainty Sampling beyond predictive uncertainty and highlight a significant performance gap to other Active Learning strategies.
We develop ground-truth Bayesian uncertainty estimates in terms of the data generating process and prove their effectiveness in guiding Uncertainty Sampling toward optimal queries.
arXiv Detail & Related papers (2024-05-02T16:50:47Z) - Instant Uncertainty Calibration of NeRFs Using a Meta-calibrator [60.47106421809998]
We introduce the concept of a meta-calibrator that performs uncertainty calibration for NeRFs with a single forward pass.
We show that the meta-calibrator can generalize on unseen scenes and achieves well-calibrated and state-of-the-art uncertainty for NeRFs.
arXiv Detail & Related papers (2023-12-04T21:29:31Z) - Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
We introduce kernel-based calibration metrics that unify and generalize popular forms of calibration for both classification and regression.
These metrics admit differentiable sample estimates, making it easy to incorporate a calibration objective into empirical risk minimization.
We provide intuitive mechanisms to tailor calibration metrics to a decision task, and enforce accurate loss estimation and no regret decisions.
arXiv Detail & Related papers (2023-10-31T06:19:40Z) - Adaptive Uncertainty Estimation via High-Dimensional Testing on Latent
Representations [28.875819909902244]
Uncertainty estimation aims to evaluate the confidence of a trained deep neural network.
Existing uncertainty estimation approaches rely on low-dimensional distributional assumptions.
We propose a new framework using data-adaptive high-dimensional hypothesis testing for uncertainty estimation.
arXiv Detail & Related papers (2023-10-25T12:22:18Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Gradient-based Uncertainty Attribution for Explainable Bayesian Deep
Learning [38.34033824352067]
Predictions made by deep learning models are prone to data perturbations, adversarial attacks, and out-of-distribution inputs.
We propose to develop explainable and actionable Bayesian deep learning methods to perform accurate uncertainty quantification.
arXiv Detail & Related papers (2023-04-10T19:14:15Z) - Calibration of Neural Networks [77.34726150561087]
This paper presents a survey of confidence calibration problems in the context of neural networks.
We analyze problem statement, calibration definitions, and different approaches to evaluation.
Empirical experiments cover various datasets and models, comparing calibration methods according to different criteria.
arXiv Detail & Related papers (2023-03-19T20:27:51Z) - Sharp Calibrated Gaussian Processes [58.94710279601622]
State-of-the-art approaches for designing calibrated models rely on inflating the Gaussian process posterior variance.
We present a calibration approach that generates predictive quantiles using a computation inspired by the vanilla Gaussian process posterior variance.
Our approach is shown to yield a calibrated model under reasonable assumptions.
arXiv Detail & Related papers (2023-02-23T12:17:36Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - T-Cal: An optimal test for the calibration of predictive models [49.11538724574202]
We consider detecting mis-calibration of predictive models using a finite validation dataset as a hypothesis testing problem.
detecting mis-calibration is only possible when the conditional probabilities of the classes are sufficiently smooth functions of the predictions.
We propose T-Cal, a minimax test for calibration based on a de-biased plug-in estimator of the $ell$-Expected Error (ECE)
arXiv Detail & Related papers (2022-03-03T16:58:54Z) - Evaluation of Machine Learning Techniques for Forecast Uncertainty
Quantification [0.13999481573773068]
Ensemble forecasting is, so far, the most successful approach to produce relevant forecasts along with an estimation of their uncertainty.
Main limitations of ensemble forecasting are the high computational cost and the difficulty to capture and quantify different sources of uncertainty.
In this work proof-of-concept model experiments are conducted to examine the performance of ANNs trained to predict a corrected state of the system and the state uncertainty using only a single deterministic forecast as input.
arXiv Detail & Related papers (2021-11-29T16:52:17Z) - Identifying Incorrect Classifications with Balanced Uncertainty [21.130311978327196]
Uncertainty estimation is critical for cost-sensitive deep-learning applications.
We propose the distributional imbalance to model the imbalance in uncertainty estimation as two kinds of distribution biases.
We then propose Balanced True Class Probability framework, which learns an uncertainty estimator with a novel Distributional Focal Loss objective.
arXiv Detail & Related papers (2021-10-15T11:52:31Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
Epistemic uncertainty is part of out-of-sample prediction error due to the lack of knowledge of the learner.
We propose a principled approach for directly estimating epistemic uncertainty by learning to predict generalization error and subtracting an estimate of aleatoric uncertainty.
arXiv Detail & Related papers (2021-02-16T23:50:35Z) - Improving model calibration with accuracy versus uncertainty
optimization [17.056768055368384]
A well-calibrated model should be accurate when it is certain about its prediction and indicate high uncertainty when it is likely to be inaccurate.
We propose an optimization method that leverages the relationship between accuracy and uncertainty as an anchor for uncertainty calibration.
We demonstrate our approach with mean-field variational inference and compare with state-of-the-art methods.
arXiv Detail & Related papers (2020-12-14T20:19:21Z) - The Aleatoric Uncertainty Estimation Using a Separate Formulation with
Virtual Residuals [51.71066839337174]
Existing methods can quantify the error in the target estimation, but they tend to underestimate it.
We propose a new separable formulation for the estimation of a signal and of its uncertainty, avoiding the effect of overfitting.
We demonstrate that the proposed method outperforms a state-of-the-art technique for signal and uncertainty estimation.
arXiv Detail & Related papers (2020-11-03T12:11:27Z) - Unsupervised Calibration under Covariate Shift [92.02278658443166]
We introduce the problem of calibration under domain shift and propose an importance sampling based approach to address it.
We evaluate and discuss the efficacy of our method on both real-world datasets and synthetic datasets.
arXiv Detail & Related papers (2020-06-29T21:50:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.