FedAD-Bench: A Unified Benchmark for Federated Unsupervised Anomaly Detection in Tabular Data
- URL: http://arxiv.org/abs/2408.04442v1
- Date: Thu, 8 Aug 2024 13:14:19 GMT
- Title: FedAD-Bench: A Unified Benchmark for Federated Unsupervised Anomaly Detection in Tabular Data
- Authors: Ahmed Anwar, Brian Moser, Dayananda Herurkar, Federico Raue, Vinit Hegiste, Tatjana Legler, Andreas Dengel,
- Abstract summary: FedAD-Bench is a benchmark for evaluating unsupervised anomaly detection algorithms within the context of federated learning.
We identify key challenges such as model aggregation inefficiencies and metric unreliability.
Our work aims to establish a standardized benchmark to guide future research and development in federated anomaly detection.
- Score: 11.42231457116486
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The emergence of federated learning (FL) presents a promising approach to leverage decentralized data while preserving privacy. Furthermore, the combination of FL and anomaly detection is particularly compelling because it allows for detecting rare and critical anomalies (usually also rare in locally gathered data) in sensitive data from multiple sources, such as cybersecurity and healthcare. However, benchmarking the performance of anomaly detection methods in FL environments remains an underexplored area. This paper introduces FedAD-Bench, a unified benchmark for evaluating unsupervised anomaly detection algorithms within the context of FL. We systematically analyze and compare the performance of recent deep learning anomaly detection models under federated settings, which were typically assessed solely in centralized settings. FedAD-Bench encompasses diverse datasets and metrics to provide a holistic evaluation. Through extensive experiments, we identify key challenges such as model aggregation inefficiencies and metric unreliability. We present insights into FL's regularization effects, revealing scenarios in which it outperforms centralized approaches due to its inherent ability to mitigate overfitting. Our work aims to establish a standardized benchmark to guide future research and development in federated anomaly detection, promoting reproducibility and fair comparison across studies.
Related papers
- Enhanced Federated Anomaly Detection Through Autoencoders Using Summary Statistics-Based Thresholding [0.0]
In Federated Learning (FL), anomaly detection is a challenging task due to the decentralized nature of data.
This study introduces a novel federated threshold calculation method that leverages summary statistics from both normal and anomalous data.
Our approach aggregates local summary statistics across clients to compute a global threshold that optimally separates anomalies from normal data.
arXiv Detail & Related papers (2024-10-11T22:21:14Z) - MeLIAD: Interpretable Few-Shot Anomaly Detection with Metric Learning and Entropy-based Scoring [2.394081903745099]
We propose MeLIAD, a novel methodology for interpretable anomaly detection.
MeLIAD is based on metric learning and achieves interpretability by design without relying on any prior distribution assumptions of true anomalies.
Experiments on five public benchmark datasets, including quantitative and qualitative evaluation of interpretability, demonstrate that MeLIAD achieves improved anomaly detection and localization performance.
arXiv Detail & Related papers (2024-09-20T16:01:43Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - Towards a Unified Framework of Clustering-based Anomaly Detection [18.30208347233284]
Unsupervised Anomaly Detection (UAD) plays a crucial role in identifying abnormal patterns within data without labeled examples.
We propose a novel probabilistic mixture model for anomaly detection to establish a theoretical connection among representation learning, clustering, and anomaly detection.
We have devised an improved anomaly score that more effectively harnesses the combined power of representation learning and clustering.
arXiv Detail & Related papers (2024-06-01T14:30:12Z) - Federated Learning with Anomaly Detection via Gradient and Reconstruction Analysis [2.28438857884398]
We introduce a novel framework that synergizes gradient-based analysis with autoencoder-driven data reconstruction to detect and mitigate poisoned data with unprecedented precision.
Our method outperforms existing solutions by 15% in anomaly detection accuracy while maintaining a minimal false positive rate.
Our work paves the way for future advancements in distributed learning security.
arXiv Detail & Related papers (2024-03-15T03:54:45Z) - Rethinking Clustered Federated Learning in NOMA Enhanced Wireless
Networks [60.09912912343705]
This study explores the benefits of integrating the novel clustered federated learning (CFL) approach with non-independent and identically distributed (non-IID) datasets.
A detailed theoretical analysis of the generalization gap that measures the degree of non-IID in the data distribution is presented.
Solutions to address the challenges posed by non-IID conditions are proposed with the analysis of the properties.
arXiv Detail & Related papers (2024-03-05T17:49:09Z) - DAGnosis: Localized Identification of Data Inconsistencies using
Structures [73.39285449012255]
Identification and appropriate handling of inconsistencies in data at deployment time is crucial to reliably use machine learning models.
We use directed acyclic graphs (DAGs) to encode the training set's features probability distribution and independencies as a structure.
Our method, called DAGnosis, leverages these structural interactions to bring valuable and insightful data-centric conclusions.
arXiv Detail & Related papers (2024-02-26T11:29:16Z) - Learning Prompt-Enhanced Context Features for Weakly-Supervised Video
Anomaly Detection [37.99031842449251]
Video anomaly detection under weak supervision presents significant challenges.
We present a weakly supervised anomaly detection framework that focuses on efficient context modeling and enhanced semantic discriminability.
Our approach significantly improves the detection accuracy of certain anomaly sub-classes, underscoring its practical value and efficacy.
arXiv Detail & Related papers (2023-06-26T06:45:16Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
We propose PULL, an iterative log analysis method for reactive anomaly detection based on estimated failure time windows.
Our evaluation shows that PULL consistently outperforms ten benchmark baselines across three different datasets.
arXiv Detail & Related papers (2023-01-25T16:34:43Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.