論文の概要: EAIRiskBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents
- arxiv url: http://arxiv.org/abs/2408.04449v3
- Date: Tue, 15 Oct 2024 07:45:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 12:11:36.784656
- Title: EAIRiskBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents
- Title(参考訳): EAIRiskBench: 基礎モデルに基づく身体的AIエージェントのタスクプランニングにおける身体的リスク意識の評価
- Authors: Zihao Zhu, Bingzhe Wu, Zhengyou Zhang, Lei Han, Baoyuan Wu,
- Abstract要約: EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
EAIRiskBenchは、EAIシナリオにおける自動物理的リスクアセスメントのための新しいフレームワークである。
- 参考スコア(独自算出の注目度): 47.69642609574771
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction. The emergence of foundation models as the "brain" of EAI agents for high-level task planning has shown promising results. However, the deployment of these agents in physical environments presents significant safety challenges. For instance, a housekeeping robot lacking sufficient risk awareness might place a metal container in a microwave, potentially causing a fire. To address these critical safety concerns, comprehensive pre-deployment risk assessments are imperative. This study introduces EAIRiskBench, a novel framework for automated physical risk assessment in EAI scenarios. EAIRiskBench employs a multi-agent cooperative system that leverages various foundation models to generate safety guidelines, create risk-prone scenarios, make task planning, and evaluate safety systematically. Utilizing this framework, we construct EAIRiskDataset, comprising diverse test cases across various domains, encompassing both textual and visual scenarios. Our comprehensive evaluation of state-of-the-art foundation models reveals alarming results: all models exhibit high task risk rates (TRR), with an average of 95.75% across all evaluated models. To address these challenges, we further propose two prompting-based risk mitigation strategies. While these strategies demonstrate some efficacy in reducing TRR, the improvements are limited, still indicating substantial safety concerns. This study provides the first large-scale assessment of physical risk awareness in EAI agents. Our findings underscore the critical need for enhanced safety measures in EAI systems and provide valuable insights for future research directions in developing safer embodied artificial intelligence system.
- Abstract(参考訳): EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としての基盤モデルの出現は、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
例えば、十分なリスク認識を欠いたハウスキーピングロボットは、金属容器をマイクロ波に配置し、火災を引き起こす可能性がある。
これらの重要な安全上の懸念に対処するためには、総合的なデプロイ前のリスク評価が不可欠である。
EAIRiskBenchは、EAIシナリオにおける自動物理的リスクアセスメントのための新しいフレームワークである。
EAIRiskBenchは、様々な基礎モデルを利用して安全ガイドラインを作成し、リスクを発生させるシナリオを作成し、タスク計画を作成し、安全を体系的に評価するマルチエージェント協調システムを採用している。
このフレームワークを利用することで、さまざまなドメインにわたるさまざまなテストケースで構成され、テキストシナリオと視覚シナリオの両方を含むEAIRiskDatasetを構築します。
全てのモデルは高いタスクリスク率(TRR)を示し、すべての評価されたモデルの平均は95.75%である。
これらの課題に対処するため、我々はさらに2つのリスク軽減戦略を提案する。
これらの戦略はTRRを減らす効果を示すが、改善は限定的であり、依然としてかなりの安全性上の懸念を示している。
本研究は,EAIエージェントにおける身体的リスク意識の大規模評価を初めて行った。
本研究は,EAIシステムにおける安全対策の強化の必要性を浮き彫りにして,より安全な組込み人工知能システムを開発する上での今後の研究の方向性に価値ある洞察を提供するものである。
関連論文リスト
- A Formal Framework for Assessing and Mitigating Emergent Security Risks in Generative AI Models: Bridging Theory and Dynamic Risk Mitigation [0.3413711585591077]
大規模言語モデル(LLM)や拡散モデルを含む生成AIシステムが急速に進歩するにつれ、その採用が増加し、新たな複雑なセキュリティリスクがもたらされた。
本稿では,これらの突発的なセキュリティリスクを分類・緩和するための新しい形式的枠組みを提案する。
我々は、潜時空間利用、マルチモーダル・クロスアタック・ベクター、フィードバックループによるモデル劣化など、未探索のリスクを特定した。
論文 参考訳(メタデータ) (2024-10-15T02:51:32Z) - Safeguarding AI Agents: Developing and Analyzing Safety Architectures [0.0]
本稿では,人間チームと連携するAIシステムにおける安全対策の必要性について論じる。
我々は,AIエージェントシステムにおける安全プロトコルを強化する3つのフレームワークを提案し,評価する。
これらのフレームワークはAIエージェントシステムの安全性とセキュリティを大幅に強化することができると結論付けている。
論文 参考訳(メタデータ) (2024-09-03T10:14:51Z) - Safetywashing: Do AI Safety Benchmarks Actually Measure Safety Progress? [59.96471873997733]
我々は、より有意義な安全指標を開発するための実証的な基盤を提案し、機械学習研究の文脈でAIの安全性を定義する。
我々は、AI安全研究のためのより厳格なフレームワークを提供し、安全性評価の科学を前進させ、測定可能な進歩への道筋を明らかにすることを目指している。
論文 参考訳(メタデータ) (2024-07-31T17:59:24Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - Mapping LLM Security Landscapes: A Comprehensive Stakeholder Risk Assessment Proposal [0.0]
本稿では,従来のシステムにおけるリスク評価手法のようなツールを用いたリスク評価プロセスを提案する。
我々は、潜在的な脅威要因を特定し、脆弱性要因に対して依存するシステムコンポーネントをマッピングするためのシナリオ分析を行う。
3つの主要株主グループに対する脅威もマップ化しています。
論文 参考訳(メタデータ) (2024-03-20T05:17:22Z) - Asset-centric Threat Modeling for AI-based Systems [7.696807063718328]
本稿では、AI関連資産、脅威、対策、残留リスクの定量化のためのアプローチおよびツールであるThreatFinderAIを提案する。
このアプローチの実用性を評価するため、参加者はAIベースのヘルスケアプラットフォームのサイバーセキュリティ専門家によって開発された脅威モデルを再現するよう命じられた。
全体として、ソリューションのユーザビリティはよく認識され、脅威の識別とリスクの議論を効果的にサポートする。
論文 参考訳(メタデータ) (2024-03-11T08:40:01Z) - ASSERT: Automated Safety Scenario Red Teaming for Evaluating the
Robustness of Large Language Models [65.79770974145983]
ASSERT、Automated Safety Scenario Red Teamingは、セマンティックなアグリゲーション、ターゲットブートストラップ、敵の知識注入という3つの方法で構成されている。
このプロンプトを4つの安全領域に分割し、ドメインがモデルの性能にどのように影響するかを詳細に分析する。
統計的に有意な性能差は, 意味的関連シナリオにおける絶対分類精度が最大11%, ゼロショット逆数設定では最大19%の絶対誤差率であることがわかった。
論文 参考訳(メタデータ) (2023-10-14T17:10:28Z) - Towards Safer Generative Language Models: A Survey on Safety Risks,
Evaluations, and Improvements [76.80453043969209]
本調査では,大規模モデルに関する安全研究の枠組みについて述べる。
まず、広範囲にわたる安全問題を導入し、その後、大型モデルの安全性評価手法を掘り下げる。
トレーニングからデプロイメントまで,大規模なモデルの安全性を高めるための戦略について検討する。
論文 参考訳(メタデータ) (2023-02-18T09:32:55Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - Quantitative AI Risk Assessments: Opportunities and Challenges [9.262092738841979]
AIベースのシステムは、組織、個人、社会に価値を提供するために、ますます活用されている。
リスクは、提案された規制、訴訟、および一般的な社会的懸念につながった。
本稿では,定量的AIリスクアセスメントの概念について考察する。
論文 参考訳(メタデータ) (2022-09-13T21:47:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。