論文の概要: Safeguarding AI Agents: Developing and Analyzing Safety Architectures
- arxiv url: http://arxiv.org/abs/2409.03793v2
- Date: Fri, 13 Sep 2024 08:14:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 22:28:05.650141
- Title: Safeguarding AI Agents: Developing and Analyzing Safety Architectures
- Title(参考訳): AIエージェントの保護 - 安全アーキテクチャの開発と分析
- Authors: Ishaan Domkundwar, Mukunda N S, Ishaan Bhola,
- Abstract要約: 本稿では,人間チームと連携するAIシステムにおける安全対策の必要性について論じる。
我々は,AIエージェントシステムにおける安全プロトコルを強化する3つのフレームワークを提案し,評価する。
これらのフレームワークはAIエージェントシステムの安全性とセキュリティを大幅に強化することができると結論付けている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI agents, specifically powered by large language models, have demonstrated exceptional capabilities in various applications where precision and efficacy are necessary. However, these agents come with inherent risks, including the potential for unsafe or biased actions, vulnerability to adversarial attacks, lack of transparency, and tendency to generate hallucinations. As AI agents become more prevalent in critical sectors of the industry, the implementation of effective safety protocols becomes increasingly important. This paper addresses the critical need for safety measures in AI systems, especially ones that collaborate with human teams. We propose and evaluate three frameworks to enhance safety protocols in AI agent systems: an LLM-powered input-output filter, a safety agent integrated within the system, and a hierarchical delegation-based system with embedded safety checks. Our methodology involves implementing these frameworks and testing them against a set of unsafe agentic use cases, providing a comprehensive evaluation of their effectiveness in mitigating risks associated with AI agent deployment. We conclude that these frameworks can significantly strengthen the safety and security of AI agent systems, minimizing potential harmful actions or outputs. Our work contributes to the ongoing effort to create safe and reliable AI applications, particularly in automated operations, and provides a foundation for developing robust guardrails to ensure the responsible use of AI agents in real-world applications.
- Abstract(参考訳): 大規模言語モデルに特化して動作するAIエージェントは、精度と有効性が必要なさまざまなアプリケーションにおいて、例外的な能力を発揮している。
しかし、これらのエージェントには、安全でない行動や偏見のない行動の可能性、敵の攻撃に対する脆弱性、透明性の欠如、幻覚を引き起こす傾向など、固有のリスクがある。
AIエージェントが業界の重要なセクターで普及するにつれて、効果的な安全プロトコルの実装がますます重要になっている。
本稿では,AIシステム,特に人間チームと連携するシステムにおいて,安全対策の重要要件について論じる。
本稿では,LLMを用いた入出力フィルタ,システム内に組み込まれた安全エージェント,組込み安全チェックを備えた階層型デリゲートベースシステムという,AIエージェントシステムの安全性プロトコルを強化するための3つのフレームワークを提案し,評価する。
我々の方法論は、これらのフレームワークを実装し、安全でないエージェントのユースケースに対してそれらをテストすることを含み、AIエージェントのデプロイメントに関連するリスクを軽減するためのそれらの効果を包括的に評価する。
これらのフレームワークはAIエージェントシステムの安全性と安全性を大幅に強化し、潜在的有害なアクションやアウトプットを最小限にすることができると結論付けている。
我々の研究は、特に自動化されたオペレーションにおいて、安全で信頼性の高いAIアプリケーションを作成するための継続的な努力に貢献し、現実世界のアプリケーションでAIエージェントの責任を負うことを保証する堅牢なガードレールを開発するための基盤を提供する。
関連論文リスト
- Multi-Agent Risks from Advanced AI [90.74347101431474]
先進的なAIのマルチエージェントシステムは、新規で未発見のリスクを生じさせる。
エージェントのインセンティブに基づく3つの重要な障害モードと7つの重要なリスク要因を同定する。
各リスクのいくつかの重要な事例と、それらを緩和するための有望な方向性を強調します。
論文 参考訳(メタデータ) (2025-02-19T23:03:21Z) - AGrail: A Lifelong Agent Guardrail with Effective and Adaptive Safety Detection [47.83354878065321]
我々は,エージェントの安全性を高めるため,生涯のガードレールであるAGrailを提案する。
AGrailは適応型安全チェック生成、効果的な安全チェック最適化、ツールの互換性と柔軟性を備えている。
論文 参考訳(メタデータ) (2025-02-17T05:12:33Z) - Agent-SafetyBench: Evaluating the Safety of LLM Agents [72.92604341646691]
我々は,大規模言語モデル(LLM)の安全性を評価するための総合ベンチマークであるAgent-SafetyBenchを紹介する。
Agent-SafetyBenchは349のインタラクション環境と2,000のテストケースを含み、安全リスクの8つのカテゴリを評価し、安全でないインタラクションで頻繁に発生する10の一般的な障害モードをカバーする。
16 名の LLM エージェントを評価した結果,いずれのエージェントも 60% 以上の安全性スコアを達成できないことがわかった。
論文 参考訳(メタデータ) (2024-12-19T02:35:15Z) - HAICOSYSTEM: An Ecosystem for Sandboxing Safety Risks in Human-AI Interactions [76.42274173122328]
本稿では,多様な複雑な社会的相互作用におけるAIエージェントの安全性を調べるフレームワークであるHAICOSYSTEMを提案する。
私たちは7つの領域(医療、金融、教育など)にわたる92のシナリオに基づいて1840のシミュレーションを実行します。
我々の実験は、最先端のLSMは、プロプライエタリかつオープンソースの両方で、50%以上のケースで安全リスクを示すことを示した。
論文 参考訳(メタデータ) (2024-09-24T19:47:21Z) - SafeEmbodAI: a Safety Framework for Mobile Robots in Embodied AI Systems [5.055705635181593]
物理的世界と自律的に対話するAIロボットを含む、身体化されたAIシステムは、かなり進歩している。
不適切な安全管理は、複雑な環境で障害を引き起こし、悪意のあるコマンドインジェクションに対してシステムが脆弱になる。
我々は,移動ロボットを組込みAIシステムに統合するための安全フレームワークであるtextitSafeEmbodAIを提案する。
論文 参考訳(メタデータ) (2024-09-03T05:56:50Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Security of AI Agents [5.468745160706382]
システムセキュリティの観点から、AIエージェントの潜在的な脆弱性を特定し、記述する。
本研究では,各脆弱性に対応する防御機構を設計と実験で導入し,その生存性を評価する。
本稿では、現在のAIエージェント開発におけるセキュリティ問題を文脈的に分析し、AIエージェントをより安全で信頼性の高いものにするための方法を解説する。
論文 参考訳(メタデータ) (2024-06-12T23:16:45Z) - AI Agents Under Threat: A Survey of Key Security Challenges and Future Pathways [10.16690494897609]
人工知能(AI)エージェント(英: Artificial Intelligence, AI)は、自律的にタスクを実行したり、事前に定義された目的やデータ入力に基づいて決定を行うソフトウェアエンティティである。
この調査は、AIエージェントが直面している新たなセキュリティ脅威を掘り下げ、これらを4つの重要な知識ギャップに分類する。
これらの脅威を体系的にレビューすることにより、この論文はAIエージェントの保護における進歩と既存の制限の両方を強調している。
論文 参考訳(メタデータ) (2024-06-04T01:22:31Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。