論文の概要: Saliency Detection in Educational Videos: Analyzing the Performance of Current Models, Identifying Limitations and Advancement Directions
- arxiv url: http://arxiv.org/abs/2408.04515v1
- Date: Thu, 8 Aug 2024 15:15:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-09 15:18:18.472703
- Title: Saliency Detection in Educational Videos: Analyzing the Performance of Current Models, Identifying Limitations and Advancement Directions
- Title(参考訳): 教育用ビデオにおける正当性検出:電流モデルの性能解析、限界の同定、進行方向
- Authors: Evelyn Navarrete, Ralph Ewerth, Anett Hoppe,
- Abstract要約: ビデオ中の残差検出は、単一のフレーム内の注意を引く領域の自動認識に対処する。
現在、教育ビデオにおける唾液度検出のアプローチを評価する研究は行われていない。
我々は、元の研究を再現し、汎用的な(非教育的な)データセットの複製能力を探求する。
- 参考スコア(独自算出の注目度): 7.706941074799756
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identifying the regions of a learning resource that a learner pays attention to is crucial for assessing the material's impact and improving its design and related support systems. Saliency detection in videos addresses the automatic recognition of attention-drawing regions in single frames. In educational settings, the recognition of pertinent regions in a video's visual stream can enhance content accessibility and information retrieval tasks such as video segmentation, navigation, and summarization. Such advancements can pave the way for the development of advanced AI-assisted technologies that support learning with greater efficacy. However, this task becomes particularly challenging for educational videos due to the combination of unique characteristics such as text, voice, illustrations, animations, and more. To the best of our knowledge, there is currently no study that evaluates saliency detection approaches in educational videos. In this paper, we address this gap by evaluating four state-of-the-art saliency detection approaches for educational videos. We reproduce the original studies and explore the replication capabilities for general-purpose (non-educational) datasets. Then, we investigate the generalization capabilities of the models and evaluate their performance on educational videos. We conduct a comprehensive analysis to identify common failure scenarios and possible areas of improvement. Our experimental results show that educational videos remain a challenging context for generic video saliency detection models.
- Abstract(参考訳): 学習者が注意を払う学習資源の地域を特定することは、材料の影響を評価し、その設計および関連する支援システムを改善するために重要である。
ビデオの残差検出は、単一のフレームにおける注意を引く領域の自動認識に対処する。
教育環境では、ビデオの視覚ストリーム内の関連する領域の認識は、コンテンツアクセシビリティと、ビデオセグメンテーション、ナビゲーション、要約などの情報検索タスクを強化することができる。
このような進歩は、より効果的な学習を支援する先進的なAI支援技術の発展の道を開くことができる。
しかし, テキスト, 音声, イラスト, アニメーションなど, ユニークな特徴が組み合わさって, 教育ビデオでは特に難しい課題となっている。
我々の知る限りでは、現在、教育ビデオにおける唾液度検出のアプローチを評価する研究は行われていない。
本稿では,このギャップを,教育用ビデオの4つの最先端唾液度検出手法の評価により解決する。
我々は、元の研究を再現し、汎用的な(非教育的な)データセットの複製能力を探求する。
そこで,本研究では,モデルの一般化能力について検討し,その性能を教育ビデオで評価する。
一般的な障害シナリオと可能な改善領域を特定するために、包括的な分析を行います。
実験結果から,教育用ビデオは一般的なビデオ・サリエンシ検出モデルでは困難な状況にあることが明らかとなった。
関連論文リスト
- Video Summarization Techniques: A Comprehensive Review [1.6381055567716192]
本稿では,抽象的戦略と抽出的戦略の両方を強調し,映像要約のための様々なアプローチと手法について考察する。
抽出要約のプロセスは、ソースビデオからキーフレームやセグメントを識別し、ショット境界認識やクラスタリングなどの手法を利用する。
一方、抽象的な要約は、深層ニューラルネットワークや自然言語処理、強化学習、注意機構、生成的敵ネットワーク、マルチモーダル学習といった機械学習モデルを用いて、ビデオから不可欠なコンテンツを取得することによって、新たなコンテンツを生成する。
論文 参考訳(メタデータ) (2024-10-06T11:17:54Z) - Deep video representation learning: a survey [4.9589745881431435]
近年,視覚データに対する逐次的特徴学習法が提案され,その特徴と欠点を比較して一般的なビデオ解析を行った。
ビデオ解析と理解を含むコンピュータビジョンタスクにおいて、ビデオの効果的な機能を構築することが根本的な問題である。
論文 参考訳(メタデータ) (2024-05-10T16:20:11Z) - Enhancing Video Summarization with Context Awareness [9.861215740353247]
ビデオ要約は、ビデオの本質をキャプチャするテクニック、ショット、セグメントを選択することで、簡潔な要約を自動的に生成する。
ビデオ要約の重要性にもかかわらず、多様で代表的なデータセットが不足している。
本稿では,映像データ構造と情報を活用して情報要約を生成する教師なし手法を提案する。
論文 参考訳(メタデータ) (2024-04-06T09:08:34Z) - Deep Learning Techniques for Video Instance Segmentation: A Survey [19.32547752428875]
ビデオインスタンスセグメンテーションは、2019年に導入された新しいコンピュータビジョン研究分野である。
ディープラーニング技術は、様々なコンピュータビジョン領域において支配的な役割を担っている。
このサーベイは、ビデオインスタンスセグメンテーションのためのディープラーニングスキームの多面的なビューを提供する。
論文 参考訳(メタデータ) (2023-10-19T00:27:30Z) - Self-Supervised Learning for Videos: A Survey [70.37277191524755]
自己教師型学習は、画像ドメインとビデオドメインの両方で有望である。
本稿では,ビデオ領域に着目した自己教師型学習における既存のアプローチについて概観する。
論文 参考訳(メタデータ) (2022-06-18T00:26:52Z) - Video Salient Object Detection via Contrastive Features and Attention
Modules [106.33219760012048]
本稿では,注目モジュールを持つネットワークを用いて,映像の有意な物体検出のためのコントラスト特徴を学習する。
コアテンションの定式化は、低レベル特徴と高レベル特徴を組み合わせるために用いられる。
提案手法は計算量が少なく,最先端の手法に対して良好に動作することを示す。
論文 参考訳(メタデータ) (2021-11-03T17:40:32Z) - Efficient Modelling Across Time of Human Actions and Interactions [92.39082696657874]
3つの畳み込みニューラルネットワーク(CNND)における現在の固定サイズの時間的カーネルは、入力の時間的変動に対処するために改善できると主張している。
我々は、アーキテクチャの異なるレイヤにまたがる機能の違いを強化することで、アクションのクラス間でどのようにうまく対処できるかを研究する。
提案手法は、いくつかのベンチマークアクション認識データセットで評価され、競合する結果を示す。
論文 参考訳(メタデータ) (2021-10-05T15:39:11Z) - A Survey on Deep Learning Technique for Video Segmentation [147.0767454918527]
ビデオセグメンテーションは幅広い応用において重要な役割を果たしている。
ディープラーニングベースのアプローチは、ビデオセグメンテーションに特化しており、魅力的なパフォーマンスを提供している。
論文 参考訳(メタデータ) (2021-07-02T15:51:07Z) - Audiovisual Highlight Detection in Videos [78.26206014711552]
本研究は,タスク上の単一特徴の有効性研究と,一つの特徴を一度に残すアブレーション研究の2つの実験の結果である。
映像要約作業では,視覚的特徴がほとんどの情報を持ち,視覚的特徴を含む視覚的特徴が視覚のみの情報よりも向上することが示唆された。
その結果,映像要約タスクからハイライト検出タスクに特化して訓練されたモデルに知識を伝達できることが示唆された。
論文 参考訳(メタデータ) (2021-02-11T02:24:00Z) - Video Summarization Using Deep Neural Networks: A Survey [72.98424352264904]
ビデオ要約技術は、ビデオコンテンツの最も有益な部分を選択して、簡潔で完全なシノプシスを作成することを目指しています。
本研究は,この領域における最近の進歩に着目し,既存の深層学習に基づく総括的映像要約手法の包括的調査を行う。
論文 参考訳(メタデータ) (2021-01-15T11:41:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。