論文の概要: Video Summarization Techniques: A Comprehensive Review
- arxiv url: http://arxiv.org/abs/2410.04449v1
- Date: Sun, 6 Oct 2024 11:17:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 07:25:54.530769
- Title: Video Summarization Techniques: A Comprehensive Review
- Title(参考訳): Video Summarization Techniques: A Comprehensive Reviews
- Authors: Toqa Alaa, Ahmad Mongy, Assem Bakr, Mariam Diab, Walid Gomaa,
- Abstract要約: 本稿では,抽象的戦略と抽出的戦略の両方を強調し,映像要約のための様々なアプローチと手法について考察する。
抽出要約のプロセスは、ソースビデオからキーフレームやセグメントを識別し、ショット境界認識やクラスタリングなどの手法を利用する。
一方、抽象的な要約は、深層ニューラルネットワークや自然言語処理、強化学習、注意機構、生成的敵ネットワーク、マルチモーダル学習といった機械学習モデルを用いて、ビデオから不可欠なコンテンツを取得することによって、新たなコンテンツを生成する。
- 参考スコア(独自算出の注目度): 1.6381055567716192
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rapid expansion of video content across a variety of industries, including social media, education, entertainment, and surveillance, has made video summarization an essential field of study. The current work is a survey that explores the various approaches and methods created for video summarizing, emphasizing both abstractive and extractive strategies. The process of extractive summarization involves the identification of key frames or segments from the source video, utilizing methods such as shot boundary recognition, and clustering. On the other hand, abstractive summarization creates new content by getting the essential content from the video, using machine learning models like deep neural networks and natural language processing, reinforcement learning, attention mechanisms, generative adversarial networks, and multi-modal learning. We also include approaches that incorporate the two methodologies, along with discussing the uses and difficulties encountered in real-world implementations. The paper also covers the datasets used to benchmark these techniques. This review attempts to provide a state-of-the-art thorough knowledge of the current state and future directions of video summarization research.
- Abstract(参考訳): ソーシャルメディア、教育、エンターテイメント、監視など、さまざまな産業におけるビデオコンテンツの急速な拡大は、ビデオ要約を重要な研究分野にしている。
現在の研究は、抽象的戦略と抽出的戦略の両方を強調する、ビデオ要約のための様々なアプローチと手法を探求する調査である。
抽出要約のプロセスは、ソースビデオからキーフレームやセグメントを識別し、ショット境界認識やクラスタリングなどの手法を利用する。
一方、抽象的な要約は、深層ニューラルネットワークや自然言語処理、強化学習、注意機構、生成的敵ネットワーク、マルチモーダル学習といった機械学習モデルを用いて、ビデオから不可欠なコンテンツを取得することによって、新たなコンテンツを生成する。
また、この2つの方法論を取り入れたアプローチや、実世界の実装で遭遇した利用と難しさについても論じる。
論文では、これらのテクニックのベンチマークに使われるデータセットについても取り上げている。
本稿では,映像要約研究の現状と今後の方向性について,最先端の知識を提供する。
関連論文リスト
- Enhancing Video Summarization with Context Awareness [9.861215740353247]
ビデオ要約は、ビデオの本質をキャプチャするテクニック、ショット、セグメントを選択することで、簡潔な要約を自動的に生成する。
ビデオ要約の重要性にもかかわらず、多様で代表的なデータセットが不足している。
本稿では,映像データ構造と情報を活用して情報要約を生成する教師なし手法を提案する。
論文 参考訳(メタデータ) (2024-04-06T09:08:34Z) - Scaling Up Video Summarization Pretraining with Large Language Models [73.74662411006426]
本稿では,大規模ビデオ要約データセットを生成するための,自動化されたスケーラブルなパイプラインを提案する。
我々は既存のアプローチの限界を分析し、それらに効果的に対処する新しいビデオ要約モデルを提案する。
我々の研究は、プロが注釈付けした高品質の要約を持つ1200本の長編ビデオを含む新しいベンチマークデータセットも提示した。
論文 参考訳(メタデータ) (2024-04-04T11:59:06Z) - Conditional Modeling Based Automatic Video Summarization [70.96973928590958]
ビデオ要約の目的は、全体を伝えるのに必要な重要な情報を保持しながら、自動的にビデオを短縮することである。
映像要約法は視覚的連続性や多様性などの視覚的要因に依存しており、ビデオの内容を完全に理解するには不十分である。
映像要約への新たなアプローチは、人間が地上の真実のビデオ要約を作成する方法から得られる知見に基づいて提案されている。
論文 参考訳(メタデータ) (2023-11-20T20:24:45Z) - Multimodal Short Video Rumor Detection System Based on Contrastive
Learning [3.4192832062683842]
中国のショートビデオプラットフォームは、フェイクニュースの拡散の場として徐々に肥大化してきた。
短いビデオの噂を区別することは、大量の情報と共有機能のために大きな課題となる。
本研究グループは,マルチモーダルな特徴融合と外部知識の統合を包含する方法論を提案する。
論文 参考訳(メタデータ) (2023-04-17T16:07:00Z) - A Survey on Deep Learning Technique for Video Segmentation [147.0767454918527]
ビデオセグメンテーションは幅広い応用において重要な役割を果たしている。
ディープラーニングベースのアプローチは、ビデオセグメンテーションに特化しており、魅力的なパフォーマンスを提供している。
論文 参考訳(メタデータ) (2021-07-02T15:51:07Z) - Highlight Timestamp Detection Model for Comedy Videos via Multimodal
Sentiment Analysis [1.6181085766811525]
本研究では,この分野での最先端性能を得るためのマルチモーダル構造を提案する。
マルチモーダルビデオ理解のためのベンチマークをいくつか選択し、最適な性能を求めるのに最適なモデルを適用した。
論文 参考訳(メタデータ) (2021-05-28T08:39:19Z) - Video Summarization Using Deep Neural Networks: A Survey [72.98424352264904]
ビデオ要約技術は、ビデオコンテンツの最も有益な部分を選択して、簡潔で完全なシノプシスを作成することを目指しています。
本研究は,この領域における最近の進歩に着目し,既存の深層学習に基づく総括的映像要約手法の包括的調査を行う。
論文 参考訳(メタデータ) (2021-01-15T11:41:29Z) - Video Super Resolution Based on Deep Learning: A Comprehensive Survey [87.30395002197344]
深層学習に基づく33の最先端ビデオ超解像法(VSR)を包括的に検討した。
そこで本研究では,フレーム間情報を利用した分類手法を提案し,その手法を6つのサブカテゴリに分類する。
いくつかのベンチマークデータセットにおける代表的VSR法の性能を要約し比較する。
論文 参考訳(メタデータ) (2020-07-25T13:39:54Z) - Convolutional Hierarchical Attention Network for Query-Focused Video
Summarization [74.48782934264094]
本稿では、ユーザのクエリと長いビデオを入力として取り込む、クエリ中心のビデオ要約の課題に対処する。
本稿では,特徴符号化ネットワークとクエリ関連計算モジュールの2つの部分からなる畳み込み階層型注意ネットワーク(CHAN)を提案する。
符号化ネットワークでは,局所的な自己認識機構と問合せ対応のグローバルアテンション機構を備えた畳み込みネットワークを用いて,各ショットの視覚情報を学習する。
論文 参考訳(メタデータ) (2020-01-31T04:30:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。