How Transformers Utilize Multi-Head Attention in In-Context Learning? A Case Study on Sparse Linear Regression
- URL: http://arxiv.org/abs/2408.04532v1
- Date: Thu, 8 Aug 2024 15:33:02 GMT
- Title: How Transformers Utilize Multi-Head Attention in In-Context Learning? A Case Study on Sparse Linear Regression
- Authors: Xingwu Chen, Lei Zhao, Difan Zou,
- Abstract summary: In this study, we consider a sparse linear regression problem and investigate how a trained multi-head transformer performs in-context learning.
We experimentally discover that the utilization of multi-heads exhibits different patterns across layers.
We demonstrate that such a preprocess-then-optimize algorithm can significantly outperform naive gradient descent and ridge regression algorithms.
- Score: 19.64743851296488
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the remarkable success of transformer-based models in various real-world tasks, their underlying mechanisms remain poorly understood. Recent studies have suggested that transformers can implement gradient descent as an in-context learner for linear regression problems and have developed various theoretical analyses accordingly. However, these works mostly focus on the expressive power of transformers by designing specific parameter constructions, lacking a comprehensive understanding of their inherent working mechanisms post-training. In this study, we consider a sparse linear regression problem and investigate how a trained multi-head transformer performs in-context learning. We experimentally discover that the utilization of multi-heads exhibits different patterns across layers: multiple heads are utilized and essential in the first layer, while usually only a single head is sufficient for subsequent layers. We provide a theoretical explanation for this observation: the first layer preprocesses the context data, and the following layers execute simple optimization steps based on the preprocessed context. Moreover, we demonstrate that such a preprocess-then-optimize algorithm can significantly outperform naive gradient descent and ridge regression algorithms. Further experimental results support our explanations. Our findings offer insights into the benefits of multi-head attention and contribute to understanding the more intricate mechanisms hidden within trained transformers.
Related papers
- Interpreting Affine Recurrence Learning in GPT-style Transformers [54.01174470722201]
In-context learning allows GPT-style transformers to generalize during inference without modifying their weights.
This paper focuses specifically on their ability to learn and predict affine recurrences as an ICL task.
We analyze the model's internal operations using both empirical and theoretical approaches.
arXiv Detail & Related papers (2024-10-22T21:30:01Z) - Can Looped Transformers Learn to Implement Multi-step Gradient Descent for In-context Learning? [69.4145579827826]
We show a fast flow on the regression loss despite the gradient non-ity algorithms for our convergence landscape.
This is the first theoretical analysis for multi-layer Transformer in this setting.
arXiv Detail & Related papers (2024-10-10T18:29:05Z) - In-Context Learning with Representations: Contextual Generalization of Trained Transformers [66.78052387054593]
In-context learning (ICL) refers to a capability of pretrained large language models, which can learn a new task given a few examples during inference.
This paper investigates the training dynamics of transformers by gradient descent through the lens of non-linear regression tasks.
arXiv Detail & Related papers (2024-08-19T16:47:46Z) - Learning on Transformers is Provable Low-Rank and Sparse: A One-layer Analysis [63.66763657191476]
We show that efficient numerical training and inference algorithms as low-rank computation have impressive performance for learning Transformer-based adaption.
We analyze how magnitude-based models affect generalization while improving adaption.
We conclude that proper magnitude-based has a slight on the testing performance.
arXiv Detail & Related papers (2024-06-24T23:00:58Z) - In-Context Convergence of Transformers [63.04956160537308]
We study the learning dynamics of a one-layer transformer with softmax attention trained via gradient descent.
For data with imbalanced features, we show that the learning dynamics take a stage-wise convergence process.
arXiv Detail & Related papers (2023-10-08T17:55:33Z) - Transformers learn in-context by gradient descent [58.24152335931036]
Training Transformers on auto-regressive objectives is closely related to gradient-based meta-learning formulations.
We show how trained Transformers become mesa-optimizers i.e. learn models by gradient descent in their forward pass.
arXiv Detail & Related papers (2022-12-15T09:21:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.