Interpreting Affine Recurrence Learning in GPT-style Transformers
- URL: http://arxiv.org/abs/2410.17438v1
- Date: Tue, 22 Oct 2024 21:30:01 GMT
- Title: Interpreting Affine Recurrence Learning in GPT-style Transformers
- Authors: Samarth Bhargav, Alexander Gu,
- Abstract summary: In-context learning allows GPT-style transformers to generalize during inference without modifying their weights.
This paper focuses specifically on their ability to learn and predict affine recurrences as an ICL task.
We analyze the model's internal operations using both empirical and theoretical approaches.
- Score: 54.01174470722201
- License:
- Abstract: Understanding the internal mechanisms of GPT-style transformers, particularly their capacity to perform in-context learning (ICL), is critical for advancing AI alignment and interpretability. In-context learning allows transformers to generalize during inference without modifying their weights, yet the precise operations driving this capability remain largely opaque. This paper presents an investigation into the mechanistic interpretability of these transformers, focusing specifically on their ability to learn and predict affine recurrences as an ICL task. To address this, we trained a custom three-layer transformer to predict affine recurrences and analyzed the model's internal operations using both empirical and theoretical approaches. Our findings reveal that the model forms an initial estimate of the target sequence using a copying mechanism in the zeroth layer, which is subsequently refined through negative similarity heads in the second layer. These insights contribute to a deeper understanding of transformer behaviors in recursive tasks and offer potential avenues for improving AI alignment through mechanistic interpretability. Finally, we discuss the implications of our results for future work, including extensions to higher-dimensional recurrences and the exploration of polynomial sequences.
Related papers
- Provably Transformers Harness Multi-Concept Word Semantics for Efficient In-Context Learning [53.685764040547625]
Transformer-based large language models (LLMs) have displayed remarkable creative prowess and emergence capabilities.
This work provides a fine mathematical analysis to show how transformers leverage the multi-concept semantics of words to enable powerful ICL and excellent out-of-distribution ICL abilities.
arXiv Detail & Related papers (2024-11-04T15:54:32Z) - How Transformers Implement Induction Heads: Approximation and Optimization Analysis [11.789846138681359]
We provide both approximation and optimization analyses of how transformers implement induction heads.
In the approximation analysis, we formalize both standard and generalized induction head mechanisms.
For the optimization analysis, we study the training dynamics on a synthetic mixed target, composed of a 4-gram and an in-context 2-gram component.
arXiv Detail & Related papers (2024-10-15T10:22:27Z) - Non-asymptotic Convergence of Training Transformers for Next-token Prediction [48.9399496805422]
Transformers have achieved extraordinary success in modern machine learning due to their excellent ability to handle sequential data.
This paper provides a fine-grained non-asymptotic analysis of the training dynamics of a one-layer transformer.
We show that the trained transformer presents non-token prediction ability with dataset shift.
arXiv Detail & Related papers (2024-09-25T20:22:06Z) - How Transformers Utilize Multi-Head Attention in In-Context Learning? A Case Study on Sparse Linear Regression [19.64743851296488]
In this study, we consider a sparse linear regression problem and investigate how a trained multi-head transformer performs in-context learning.
We experimentally discover that the utilization of multi-heads exhibits different patterns across layers.
We demonstrate that such a preprocess-then-optimize algorithm can significantly outperform naive gradient descent and ridge regression algorithms.
arXiv Detail & Related papers (2024-08-08T15:33:02Z) - Strengthening Structural Inductive Biases by Pre-training to Perform Syntactic Transformations [75.14793516745374]
We propose to strengthen the structural inductive bias of a Transformer by intermediate pre-training.
Our experiments confirm that this helps with few-shot learning of syntactic tasks such as chunking.
Our analysis shows that the intermediate pre-training leads to attention heads that keep track of which syntactic transformation needs to be applied to which token.
arXiv Detail & Related papers (2024-07-05T14:29:44Z) - A Mechanistic Analysis of a Transformer Trained on a Symbolic Multi-Step Reasoning Task [14.921790126851008]
We present a comprehensive mechanistic analysis of a transformer trained on a synthetic reasoning task.
We identify a set of interpretable mechanisms the model uses to solve the task, and validate our findings using correlational and causal evidence.
arXiv Detail & Related papers (2024-02-19T08:04:25Z) - Investigating Recurrent Transformers with Dynamic Halt [64.862738244735]
We study the inductive biases of two major approaches to augmenting Transformers with a recurrent mechanism.
We propose and investigate novel ways to extend and combine the methods.
arXiv Detail & Related papers (2024-02-01T19:47:31Z) - In-Context Convergence of Transformers [63.04956160537308]
We study the learning dynamics of a one-layer transformer with softmax attention trained via gradient descent.
For data with imbalanced features, we show that the learning dynamics take a stage-wise convergence process.
arXiv Detail & Related papers (2023-10-08T17:55:33Z) - Effects of Parameter Norm Growth During Transformer Training: Inductive
Bias from Gradient Descent [44.44543743806831]
We study the tendency for transformer parameters to grow in magnitude while saturated between these norms during training.
As the parameters grow in magnitude, we prove that the network approximates a discretized network with saturated activation functions.
Our results suggest saturation is a new characterization of an inductive bias implicit in GD of particular interest for NLP.
arXiv Detail & Related papers (2020-10-19T17:40:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.