WeakMedSAM: Weakly-Supervised Medical Image Segmentation via SAM with Sub-Class Exploration and Prompt Affinity Mining
- URL: http://arxiv.org/abs/2503.04106v1
- Date: Thu, 06 Mar 2025 05:28:44 GMT
- Title: WeakMedSAM: Weakly-Supervised Medical Image Segmentation via SAM with Sub-Class Exploration and Prompt Affinity Mining
- Authors: Haoran Wang, Lian Huai, Wenbin Li, Lei Qi, Xingqun Jiang, Yinghuan Shi,
- Abstract summary: We investigate a weakly-supervised SAM-based segmentation model, namely WeakMedSAM, to reduce the labeling cost.<n>Specifically, our proposed WeakMedSAM contains two modules: 1) to mitigate severe co-occurrence in medical images, and 2) to improve the quality of the class activation maps.<n>Our method can be applied to any SAM-like backbone, and we conduct experiments with SAMUS and EfficientSAM.
- Score: 31.81408955413914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We have witnessed remarkable progress in foundation models in vision tasks. Currently, several recent works have utilized the segmenting anything model (SAM) to boost the segmentation performance in medical images, where most of them focus on training an adaptor for fine-tuning a large amount of pixel-wise annotated medical images following a fully supervised manner. In this paper, to reduce the labeling cost, we investigate a novel weakly-supervised SAM-based segmentation model, namely WeakMedSAM. Specifically, our proposed WeakMedSAM contains two modules: 1) to mitigate severe co-occurrence in medical images, a sub-class exploration module is introduced to learn accurate feature representations. 2) to improve the quality of the class activation maps, our prompt affinity mining module utilizes the prompt capability of SAM to obtain an affinity map for random-walk refinement. Our method can be applied to any SAM-like backbone, and we conduct experiments with SAMUS and EfficientSAM. The experimental results on three popularly-used benchmark datasets, i.e., BraTS 2019, AbdomenCT-1K, and MSD Cardiac dataset, show the promising results of our proposed WeakMedSAM. Our code is available at https://github.com/wanghr64/WeakMedSAM.
Related papers
- Few-Shot Adaptation of Training-Free Foundation Model for 3D Medical Image Segmentation [8.78725593323412]
Few-shot Adaptation of Training-frEe SAM (FATE-SAM) is a novel method designed to adapt the advanced Segment Anything Model 2 (SAM2) for 3D medical image segmentation.
FATE-SAM reassembles pre-trained modules of SAM2 to enable few-shot adaptation, leveraging a small number of support examples.
We evaluate FATE-SAM on multiple medical imaging datasets and compare it with supervised learning methods, zero-shot SAM approaches, and fine-tuned medical SAM methods.
arXiv Detail & Related papers (2025-01-15T20:44:21Z) - Learnable Prompting SAM-induced Knowledge Distillation for Semi-supervised Medical Image Segmentation [47.789013598970925]
We propose a learnable prompting SAM-induced Knowledge distillation framework (KnowSAM) for semi-supervised medical image segmentation.<n>Our model outperforms the state-of-the-art semi-supervised segmentation approaches.
arXiv Detail & Related papers (2024-12-18T11:19:23Z) - DB-SAM: Delving into High Quality Universal Medical Image Segmentation [100.63434169944853]
We propose a dual-branch adapted SAM framework, named DB-SAM, to bridge the gap between natural and 2D/3D medical data.
Our proposed DB-SAM achieves an absolute gain of 8.8%, compared to a recent medical SAM adapter in the literature.
arXiv Detail & Related papers (2024-10-05T14:36:43Z) - RevSAM2: Prompt SAM2 for Medical Image Segmentation via Reverse-Propagation without Fine-tuning [4.590933790796203]
We introduce RevSAM2, a simple yet effective self-correction framework for medical image segmentation.
RevSAM2 achieves superior performance in unseen 3D medical image segmentation tasks without the need for fine-tuning.
We are the first to explore the potential of SAM2 in label-efficient medical image segmentation without fine-tuning.
arXiv Detail & Related papers (2024-09-06T14:17:09Z) - SAM2-UNet: Segment Anything 2 Makes Strong Encoder for Natural and Medical Image Segmentation [51.90445260276897]
We prove that the Segment Anything Model 2 (SAM2) can be a strong encoder for U-shaped segmentation models.
We propose a simple but effective framework, termed SAM2-UNet, for versatile image segmentation.
arXiv Detail & Related papers (2024-08-16T17:55:38Z) - SAM2-Adapter: Evaluating & Adapting Segment Anything 2 in Downstream Tasks: Camouflage, Shadow, Medical Image Segmentation, and More [16.40994541980171]
This paper introduces SAM2-Adapter, the first adapter designed to overcome the persistent limitations observed in SAM2.
It builds on the SAM-Adapter's strengths, offering enhanced generalizability and composability for diverse applications.
We show the potential and encourage the research community to leverage the SAM2 model with our SAM2-Adapter.
arXiv Detail & Related papers (2024-08-08T16:40:15Z) - Path-SAM2: Transfer SAM2 for digital pathology semantic segmentation [6.721564277355789]
We propose Path-SAM2, which for the first time adapts the SAM2 model to cater to the task of pathological semantic segmentation.
We integrate the largest pretrained vision encoder for histopathology (UNI) with the original SAM2 encoder, adding more pathology-based prior knowledge.
In three adenoma pathological datasets, Path-SAM2 has achieved state-of-the-art performance.
arXiv Detail & Related papers (2024-08-07T09:30:51Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
We introduce a modality-agnostic SAM adaptation framework, named as MA-SAM.
Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments.
By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data.
arXiv Detail & Related papers (2023-09-16T02:41:53Z) - AutoSAM: Adapting SAM to Medical Images by Overloading the Prompt
Encoder [101.28268762305916]
In this work, we replace Segment Anything Model with an encoder that operates on the same input image.
We obtain state-of-the-art results on multiple medical images and video benchmarks.
For inspecting the knowledge within it, and providing a lightweight segmentation solution, we also learn to decode it into a mask by a shallow deconvolution network.
arXiv Detail & Related papers (2023-06-10T07:27:00Z) - Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation [51.770805270588625]
The Segment Anything Model (SAM) has recently gained popularity in the field of image segmentation.
Recent studies and individual experiments have shown that SAM underperforms in medical image segmentation.
We propose the Medical SAM Adapter (Med-SA), which incorporates domain-specific medical knowledge into the segmentation model.
arXiv Detail & Related papers (2023-04-25T07:34:22Z) - Segment Anything Model for Medical Image Analysis: an Experimental Study [19.95972201734614]
Segment Anything Model (SAM) is a foundation model that is intended to segment user-defined objects of interest in an interactive manner.
We evaluate SAM's ability to segment medical images on a collection of 19 medical imaging datasets from various modalities and anatomies.
arXiv Detail & Related papers (2023-04-20T17:50:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.