論文の概要: Risks, Causes, and Mitigations of Widespread Deployments of Large Language Models (LLMs): A Survey
- arxiv url: http://arxiv.org/abs/2408.04643v1
- Date: Thu, 1 Aug 2024 21:21:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 04:27:34.312970
- Title: Risks, Causes, and Mitigations of Widespread Deployments of Large Language Models (LLMs): A Survey
- Title(参考訳): 大規模言語モデル(LLM)の広範展開のリスク・原因・緩和に関する調査
- Authors: Md Nazmus Sakib, Md Athikul Islam, Royal Pathak, Md Mashrur Arifin,
- Abstract要約: 大規模言語モデル(LLM)は、テキスト生成、要約、分類において優れた能力を持つ自然言語処理(NLP)を変革した。
彼らの普及は、学術的完全性、著作権、環境への影響、データバイアス、公正性、プライバシといった倫理的考察など、多くの課題をもたらす。
本稿は、Google Scholarから体系的に収集・合成されたこれらの主題に関する文献に関する総合的な調査である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in Large Language Models (LLMs), such as ChatGPT and LLaMA, have significantly transformed Natural Language Processing (NLP) with their outstanding abilities in text generation, summarization, and classification. Nevertheless, their widespread adoption introduces numerous challenges, including issues related to academic integrity, copyright, environmental impacts, and ethical considerations such as data bias, fairness, and privacy. The rapid evolution of LLMs also raises concerns regarding the reliability and generalizability of their evaluations. This paper offers a comprehensive survey of the literature on these subjects, systematically gathered and synthesized from Google Scholar. Our study provides an in-depth analysis of the risks associated with specific LLMs, identifying sub-risks, their causes, and potential solutions. Furthermore, we explore the broader challenges related to LLMs, detailing their causes and proposing mitigation strategies. Through this literature analysis, our survey aims to deepen the understanding of the implications and complexities surrounding these powerful models.
- Abstract(参考訳): ChatGPTやLLaMAといった大規模言語モデル(LLM)の最近の進歩は、テキスト生成、要約、分類において優れた能力を持つ自然言語処理(NLP)を著しく変化させてきた。
それにもかかわらず、彼らの普及は、学術的完全性、著作権、環境への影響、データバイアス、公正性、プライバシーなどの倫理的考察など、多くの課題をもたらす。
LLMの急速な進化は、それらの評価の信頼性と一般化性に関する懸念も引き起こす。
本稿は、Google Scholarから体系的に収集・合成されたこれらの主題に関する文献に関する総合的な調査である。
本研究は,特定のLSMに関連するリスクを詳細に分析し,サブリスク,その原因,潜在的な解決策を同定する。
さらに, LLM に関する幅広い課題について検討し, その原因を詳述し, 緩和戦略を提案する。
この文献分析を通じて、これらの強力なモデルを取り巻く意味や複雑さの理解を深めることを目的としている。
関連論文リスト
- Navigating the Risks: A Survey of Security, Privacy, and Ethics Threats in LLM-Based Agents [67.07177243654485]
この調査は、大規模言語モデルに基づくエージェントが直面するさまざまな脅威を収集、分析する。
LLMをベースとしたエージェントの6つの重要な特徴を概説する。
4つの代表エージェントをケーススタディとして選択し,実践的に直面する可能性のあるリスクを分析した。
論文 参考訳(メタデータ) (2024-11-14T15:40:04Z) - Persuasion with Large Language Models: a Survey [49.86930318312291]
大規模言語モデル (LLM) は説得力のあるコミュニケーションに新たな破壊的可能性を生み出している。
政治、マーケティング、公衆衛生、電子商取引、慈善事業などの分野では、LLMシステムズは既に人間レベルや超人的説得力を達成している。
LLMをベースとした説得の現在と将来の可能性は、倫理的・社会的リスクを著しく引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2024-11-11T10:05:52Z) - A Survey on the Honesty of Large Language Models [115.8458596738659]
正直とは、大きな言語モデル(LLM)を人間の価値と整合させる基本的な原則である。
将来性はあるものの、現在のLLMは依然として重大な不正直な行動を示す。
論文 参考訳(メタデータ) (2024-09-27T14:34:54Z) - Decoding Large-Language Models: A Systematic Overview of Socio-Technical Impacts, Constraints, and Emerging Questions [1.1970409518725493]
この記事では、倫理的考察とともに、社会に肯定的な影響を与える可能性のある適用領域を強調します。
これには、開発に関する責任ある考慮、アルゴリズムの改善、倫理的課題、社会的影響が含まれる。
論文 参考訳(メタデータ) (2024-09-25T14:36:30Z) - AI Safety in Generative AI Large Language Models: A Survey [14.737084887928408]
生成的AI能力を示す大規模言語モデル(LLM)は、採用とイノベーションの加速に直面している。
生成AI(GAI)は、これらのモデルに関連するリスクと安全性に関する懸念を必然的に高める。
本稿では,コンピュータ科学者の視点からAI安全研究の最新の動向について報告する。
論文 参考訳(メタデータ) (2024-07-06T09:00:18Z) - Deconstructing The Ethics of Large Language Models from Long-standing Issues to New-emerging Dilemmas: A Survey [27.689403365365685]
大規模言語モデル(LLM)は近年,多種多様な言語モデリングタスクにおいて,相容れない成功を収めている。
本稿では,著作権侵害などの長年の課題から,真偽や社会規範といった新たな問題まで,LLMに関連する倫理的課題を包括的に調査する。
論文 参考訳(メタデータ) (2024-06-08T07:55:01Z) - A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [65.87885628115946]
大規模言語モデル(LLM)は、金融、医療、法律の展望に革命をもたらしている。
我々は、医療における診断・治療方法論の強化、財務分析の革新、法的解釈・コンプライアンス戦略の精査におけるLCMの役割を強調した。
これらの分野におけるLLMアプリケーションの倫理を批判的に検討し、既存の倫理的懸念と透明で公平で堅牢なAIシステムの必要性を指摘した。
論文 参考訳(メタデータ) (2024-05-02T22:43:02Z) - Securing Large Language Models: Threats, Vulnerabilities and Responsible Practices [4.927763944523323]
大規模言語モデル(LLM)は、自然言語処理(NLP)のランドスケープを大きく変えた。
本研究は,5つのテーマの観点から,LLMに関するセキュリティとプライバシの懸念を徹底的に調査する。
本稿は, LLMの安全性とリスク管理を強化するために, 今後の研究に期待できる道筋を提案する。
論文 参考訳(メタデータ) (2024-03-19T07:10:58Z) - Bridging Causal Discovery and Large Language Models: A Comprehensive
Survey of Integrative Approaches and Future Directions [10.226735765284852]
因果発見(CD)とLarge Language Models(LLM)は、人工知能に重要な意味を持つ2つの新しい研究分野を表す。
本稿では,CDタスクへのLPM(GPT4など)の統合に関する総合的な調査を行う。
論文 参考訳(メタデータ) (2024-02-16T20:48:53Z) - SciBench: Evaluating College-Level Scientific Problem-Solving Abilities of Large Language Models [70.5763210869525]
拡張ベンチマークスイートSciBench for Large Language Model (LLM)を導入する。
SciBenchには、数学、化学、物理学の分野から、さまざまな大学レベルの科学的問題を含むデータセットが含まれている。
その結果、現在のLLMは満足のいく性能を達成できないことが判明し、全体のスコアは43.22%に過ぎなかった。
論文 参考訳(メタデータ) (2023-07-20T07:01:57Z) - On the Risk of Misinformation Pollution with Large Language Models [127.1107824751703]
本稿では,現代大規模言語モデル (LLM) の誤用の可能性について検討する。
本研究は, LLMが効果的な誤情報発生器として機能し, DOQAシステムの性能が著しく低下することを明らかにする。
論文 参考訳(メタデータ) (2023-05-23T04:10:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。