論文の概要: Chain of Stance: Stance Detection with Large Language Models
- arxiv url: http://arxiv.org/abs/2408.04649v1
- Date: Sat, 3 Aug 2024 16:30:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 04:16:58.051434
- Title: Chain of Stance: Stance Detection with Large Language Models
- Title(参考訳): スタンスの連鎖:大規模言語モデルを用いたスタンス検出
- Authors: Junxia Ma, Changjiang Wang, Hanwen Xing, Dongming Zhao, Yazhou Zhang,
- Abstract要約: スタンス検出は自然言語処理(NLP)におけるアクティブタスクである
我々は、Stance (CoS) の textitChain と呼ばれる新しいプロンプト手法を提案する。
- 参考スコア(独自算出の注目度): 3.528201746844624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stance detection is an active task in natural language processing (NLP) that aims to identify the author's stance towards a particular target within a text. Given the remarkable language understanding capabilities and encyclopedic prior knowledge of large language models (LLMs), how to explore the potential of LLMs in stance detection has received significant attention. Unlike existing LLM-based approaches that focus solely on fine-tuning with large-scale datasets, we propose a new prompting method, called \textit{Chain of Stance} (CoS). In particular, it positions LLMs as expert stance detectors by decomposing the stance detection process into a series of intermediate, stance-related assertions that culminate in the final judgment. This approach leads to significant improvements in classification performance. We conducted extensive experiments using four SOTA LLMs on the SemEval 2016 dataset, covering the zero-shot and few-shot learning setups. The results indicate that the proposed method achieves state-of-the-art results with an F1 score of 79.84 in the few-shot setting.
- Abstract(参考訳): スタンス検出は、テキスト内の特定のターゲットに対する著者の姿勢を特定することを目的として、自然言語処理(NLP)において活発なタスクである。
大規模言語モデル(LLM)の言語理解能力と百科事典的事前知識から,姿勢検出におけるLLMの可能性を探究する方法が注目されている。
大規模データセットによる微調整にのみ焦点をあてる既存のLCMベースのアプローチとは異なり、我々は新しいプロンプト法である「textit{Chain of Stance} (CoS)」を提案する。
特に、LSMを専門家のスタンス検出装置として位置づけ、スタンス検出プロセスを最終判断に終止符を打つ一連の中間的、スタンス関連アサーションに分解する。
このアプローチは、分類性能を大幅に改善する。
我々はSemEval 2016データセット上で4つのSOTA LLMを用いて広範囲に実験を行い、ゼロショットと少数ショットの学習設定をカバーした。
提案手法は,F1スコアが79.84であり,この結果が得られたことを示唆する。
関連論文リスト
- Improving In-Context Learning with Small Language Model Ensembles [2.3499129784547654]
In-context Learning (ICL) は安価で効率的な代替手段であるが、高度な手法の精度と一致しない。
本稿では,複数の微調整小言語モデル(SLM)の専門知識を活用することでICLを強化する新しいアプローチであるEnsemble SuperICLを提案する。
論文 参考訳(メタデータ) (2024-10-29T09:02:37Z) - A Bayesian Approach to Harnessing the Power of LLMs in Authorship Attribution [57.309390098903]
著者の属性は、文書の起源または著者を特定することを目的としている。
大きな言語モデル(LLM)とその深い推論能力と長距離テキストアソシエーションを維持する能力は、有望な代替手段を提供する。
IMDbおよびブログデータセットを用いた結果, 著者10名を対象に, 著者1名に対して, 85%の精度が得られた。
論文 参考訳(メタデータ) (2024-10-29T04:14:23Z) - Traffic Light or Light Traffic? Investigating Phrasal Semantics in Large Language Models [41.233879429714925]
本研究は,フレーズ意味論を理解するためのAPIベースの大規模言語モデルの能力について批判的に考察する。
自然言語命令で指示されたフレーズ意味推論タスクの実行におけるLLMの性能を評価する。
句意味論の理解において, LLM が直面する制約を解釈するために, 詳細な誤り解析を行う。
論文 参考訳(メタデータ) (2024-10-03T08:44:17Z) - Predicting User Stances from Target-Agnostic Information using Large Language Models [6.9337465525334405]
ターゲットに依存しないソーシャルメディア投稿のコレクションから,ターゲットに対するユーザの姿勢を予測できるLarge Language Models(LLMs)機能について検討した。
論文 参考訳(メタデータ) (2024-09-22T11:21:16Z) - RAR: Retrieving And Ranking Augmented MLLMs for Visual Recognition [78.97487780589574]
MLLM(Multimodal Large Language Models)は、細粒度カテゴリの分類において優れている。
本稿では,MLLMの検索とランク付けのための拡張手法を提案する。
提案手法は, 微粒化認識における固有の限界に対処するだけでなく, モデルの包括的知識基盤も維持する。
論文 参考訳(メタデータ) (2024-03-20T17:59:55Z) - Found in the Middle: How Language Models Use Long Contexts Better via
Plug-and-Play Positional Encoding [78.36702055076456]
本稿では,マルチスケール位置決めについて紹介する。
(Ms-PoE)は、シンプルで効果的なプラグアンドプレイ方式で、キャパシティを向上させる。
LLMはコンテキストの中央に位置する関連情報を扱う。
論文 参考訳(メタデータ) (2024-03-05T04:58:37Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICLは、正しいサンプル構築と間違ったサンプル構築の両方を活用して、コンテキスト内学習のデモを作成する、新しい数ショット技術である。
各種データセットに対する実験により,c-ICLは従来の数発のインコンテキスト学習法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-02-17T11:28:08Z) - Measuring Distributional Shifts in Text: The Advantage of Language
Model-Based Embeddings [11.393822909537796]
実運用における機械学習モデル監視の重要な部分は、入力と出力データのドリフトを測定することである。
大規模言語モデル(LLM)の最近の進歩は、意味的関係を捉える上での有効性を示している。
このような埋め込みを利用してテキストデータの分布変化を測定するクラスタリングに基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-12-04T20:46:48Z) - Stance Detection with Collaborative Role-Infused LLM-Based Agents [39.75103353173015]
スタンス検出は、ウェブおよびソーシャルメディア研究におけるコンテンツ分析に不可欠である。
しかし、姿勢検出には、著者の暗黙の視点を推測する高度な推論が必要である。
LLMを異なる役割に指定した3段階のフレームワークを設計する。
複数のデータセットにまたがって最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-10-16T14:46:52Z) - Iterative Forward Tuning Boosts In-Context Learning in Language Models [88.25013390669845]
本研究では,大規模言語モデル(LLM)における文脈内学習を促進する新しい2段階フレームワークを提案する。
具体的には、当社のフレームワークでは、ICLプロセスをDeep-ThinkingとTest Stageの2つの別々のステージに分類しています。
ディープシンキング段階にはユニークな注意機構、すなわち反復的な注意強化機構が組み込まれており、複数の情報の蓄積を可能にしている。
論文 参考訳(メタデータ) (2023-05-22T13:18:17Z) - Bridging the Gap between Language Models and Cross-Lingual Sequence
Labeling [101.74165219364264]
大規模言語間事前学習言語モデル (xPLM) は、言語間シーケンスラベリングタスクにおいて有効であることを示す。
大きな成功にもかかわらず、事前学習と微調整の段階の間には訓練対象のギャップがあるという経験的観察を描いている。
本稿では,まず,言語間インフォーマティブ・スパン・マスキング(CLISM)と呼ばれるxSLのための事前学習タスクを設計し,目的のギャップを解消する。
第2に、コントラスト学習を利用して入力並列表現間の一貫性を促進するContrAstive-Consistency Regularization (CACR)を提案する。
論文 参考訳(メタデータ) (2022-04-11T15:55:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。