Decoding EEG Speech Perception with Transformers and VAE-based Data Augmentation
- URL: http://arxiv.org/abs/2501.04359v1
- Date: Wed, 08 Jan 2025 08:55:10 GMT
- Title: Decoding EEG Speech Perception with Transformers and VAE-based Data Augmentation
- Authors: Terrance Yu-Hao Chen, Yulin Chen, Pontus Soederhaell, Sadrishya Agrawal, Kateryna Shapovalenko,
- Abstract summary: Decoding speech from electroencephalography (EEG) has the potential to advance brain-computer interfaces (BCIs)
EEG-based speech decoding faces major challenges, such as noisy data, limited datasets, and poor performance on complex tasks like speech perception.
This study attempts to address these challenges by employing variational autoencoders (VAEs) for EEG data augmentation to improve data quality.
- Score: 6.405846203953988
- License:
- Abstract: Decoding speech from non-invasive brain signals, such as electroencephalography (EEG), has the potential to advance brain-computer interfaces (BCIs), with applications in silent communication and assistive technologies for individuals with speech impairments. However, EEG-based speech decoding faces major challenges, such as noisy data, limited datasets, and poor performance on complex tasks like speech perception. This study attempts to address these challenges by employing variational autoencoders (VAEs) for EEG data augmentation to improve data quality and applying a state-of-the-art (SOTA) sequence-to-sequence deep learning architecture, originally successful in electromyography (EMG) tasks, to EEG-based speech decoding. Additionally, we adapt this architecture for word classification tasks. Using the Brennan dataset, which contains EEG recordings of subjects listening to narrated speech, we preprocess the data and evaluate both classification and sequence-to-sequence models for EEG-to-words/sentences tasks. Our experiments show that VAEs have the potential to reconstruct artificial EEG data for augmentation. Meanwhile, our sequence-to-sequence model achieves more promising performance in generating sentences compared to our classification model, though both remain challenging tasks. These findings lay the groundwork for future research on EEG speech perception decoding, with possible extensions to speech production tasks such as silent or imagined speech.
Related papers
- Large Language Model Based Generative Error Correction: A Challenge and Baselines for Speech Recognition, Speaker Tagging, and Emotion Recognition [110.8431434620642]
We introduce the generative speech transcription error correction (GenSEC) challenge.
This challenge comprises three post-ASR language modeling tasks: (i) post-ASR transcription correction, (ii) speaker tagging, and (iii) emotion recognition.
We discuss insights from baseline evaluations, as well as lessons learned for designing future evaluations.
arXiv Detail & Related papers (2024-09-15T16:32:49Z) - Towards Linguistic Neural Representation Learning and Sentence Retrieval from Electroencephalogram Recordings [27.418738450536047]
We propose a two-step pipeline for converting EEG signals into sentences.
We first confirm that word-level semantic information can be learned from EEG data recorded during natural reading.
We employ a training-free retrieval method to retrieve sentences based on the predictions from the EEG encoder.
arXiv Detail & Related papers (2024-08-08T03:40:25Z) - Speech Emotion Recognition under Resource Constraints with Data Distillation [64.36799373890916]
Speech emotion recognition (SER) plays a crucial role in human-computer interaction.
The emergence of edge devices in the Internet of Things presents challenges in constructing intricate deep learning models.
We propose a data distillation framework to facilitate efficient development of SER models in IoT applications.
arXiv Detail & Related papers (2024-06-21T13:10:46Z) - EEG decoding with conditional identification information [7.873458431535408]
Decoding EEG signals is crucial for unraveling human brain and advancing brain-computer interfaces.
Traditional machine learning algorithms have been hindered by the high noise levels and inherent inter-person variations in EEG signals.
Recent advances in deep neural networks (DNNs) have shown promise, owing to their advanced nonlinear modeling capabilities.
arXiv Detail & Related papers (2024-03-21T13:38:59Z) - Enhancing EEG-to-Text Decoding through Transferable Representations from Pre-trained Contrastive EEG-Text Masked Autoencoder [69.7813498468116]
We propose Contrastive EEG-Text Masked Autoencoder (CET-MAE), a novel model that orchestrates compound self-supervised learning across and within EEG and text.
We also develop a framework called E2T-PTR (EEG-to-Text decoding using Pretrained Transferable Representations) to decode text from EEG sequences.
arXiv Detail & Related papers (2024-02-27T11:45:21Z) - Brain-Driven Representation Learning Based on Diffusion Model [25.375490061512]
Denoising diffusion probabilistic models (DDPMs) are explored in our research as a means to address this issue.
Using DDPMs in conjunction with a conditional autoencoder, our new approach considerably outperforms traditional machine learning algorithms.
Our results highlight the potential of DDPMs as a sophisticated computational method for the analysis of speech-related EEG signals.
arXiv Detail & Related papers (2023-11-14T05:59:58Z) - Diff-E: Diffusion-based Learning for Decoding Imagined Speech EEG [17.96977778655143]
We propose a novel method for decoding EEG signals for imagined speech using DDPMs and a conditional autoencoder named Diff-E.
Results indicate that Diff-E significantly improves the accuracy of decoding EEG signals for imagined speech compared to traditional machine learning techniques and baseline models.
arXiv Detail & Related papers (2023-07-26T07:12:39Z) - Data augmentation for learning predictive models on EEG: a systematic
comparison [79.84079335042456]
deep learning for electroencephalography (EEG) classification tasks has been rapidly growing in the last years.
Deep learning for EEG classification tasks has been limited by the relatively small size of EEG datasets.
Data augmentation has been a key ingredient to obtain state-of-the-art performances across applications such as computer vision or speech.
arXiv Detail & Related papers (2022-06-29T09:18:15Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
Speech emotion recognition (SER) is a challenging task that plays a crucial role in natural human-computer interaction.
One of the main challenges in SER is data scarcity.
We propose a transfer learning strategy combined with spectrogram augmentation.
arXiv Detail & Related papers (2021-08-05T10:39:39Z) - Speech Command Recognition in Computationally Constrained Environments
with a Quadratic Self-organized Operational Layer [92.37382674655942]
We propose a network layer to enhance the speech command recognition capability of a lightweight network.
The employed method borrows the ideas of Taylor expansion and quadratic forms to construct a better representation of features in both input and hidden layers.
This richer representation results in recognition accuracy improvement as shown by extensive experiments on Google speech commands (GSC) and synthetic speech commands (SSC) datasets.
arXiv Detail & Related papers (2020-11-23T14:40:18Z) - Constrained Variational Autoencoder for improving EEG based Speech
Recognition Systems [3.5786621294068377]
We introduce a recurrent neural network (RNN) based variational autoencoder (VAE) model with a new constrained loss function.
We demonstrate that both continuous and isolated speech recognition systems trained and tested using EEG features generated from raw EEG features.
arXiv Detail & Related papers (2020-06-01T06:03:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.