Quantum Neural Network Training of a Repeater Node
- URL: http://arxiv.org/abs/2408.04709v1
- Date: Thu, 8 Aug 2024 18:19:09 GMT
- Title: Quantum Neural Network Training of a Repeater Node
- Authors: Diego Fuentealba, Jack Dahn, James Steck, Elizabeth Behrman,
- Abstract summary: Real-world quantum computers suffer from many forms of noise, characterized by the decoherence and relaxation times of a quantum circuit.
A quantum neural network (QNN) is constructed to perform the swap operation and compare a trained QNN solution to the standard swap gate.
We find that the QNN easily generalizes for two qubits and can be scaled up to more qubits without additional training.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The construction of robust and scalable quantum gates is a uniquely hard problem in the field of quantum computing. Real-world quantum computers suffer from many forms of noise, characterized by the decoherence and relaxation times of a quantum circuit, which make it very hard to construct efficient quantum algorithms. One example is a quantum repeater node, a circuit that swaps the states of two entangled input and output qubits. Robust quantum repeaters are a necessary building block of long-distance quantum networks. A solution exists for this problem, known as a swap gate, but its noise tolerance is poor. Machine learning may hold the key to efficient and robust quantum algorithm design, as demonstrated by its ability to learn to control other noisy and highly nonlinear systems. Here, a quantum neural network (QNN) is constructed to perform the swap operation and compare a trained QNN solution to the standard swap gate. The system of qubits and QNN is constructed in MATLAB and trained under ideal conditions before noise is artificially added to the system to test robustness. We find that the QNN easily generalizes for two qubits and can be scaled up to more qubits without additional training. We also find that as the number of qubits increases, the noise tolerance increases with it, meaning a sufficiently large system can produce extremely noise-tolerant results. This begins to explore the ability of neural networks to construct those robust systems.
Related papers
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Scalable Quantum Neural Networks for Classification [11.839990651381617]
We propose an approach to implementing a scalable quantum neural network (SQNN) by utilizing the quantum resource of multiple small-size quantum devices cooperatively.
In an SQNN system, several quantum devices are used as quantum feature extractors, extracting local features from an input instance in parallel, and a quantum device works as a quantum predictor.
arXiv Detail & Related papers (2022-08-04T20:35:03Z) - Can Noise on Qubits Be Learned in Quantum Neural Network? A Case Study
on QuantumFlow [25.408147000243158]
This paper aims to tackle the noise issue from another angle.
Instead of creating perfect qubits for general quantum algorithms, we investigate the potential to mitigate the noise issue for dedicate algorithms.
This paper targets quantum neural network (QNN), and proposes to learn the errors in the training phase, so that the identified QNN model can be resilient to noise.
arXiv Detail & Related papers (2021-09-08T04:43:12Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
We show that conditions amenable to classical trainability via gradient descent coincide with those necessary for efficiently solving quantum linear systems.
We numerically demonstrate that the MNIST image dataset satisfies such conditions.
We provide empirical evidence for $O(log n)$ training of a convolutional neural network with pooling.
arXiv Detail & Related papers (2021-07-19T23:41:03Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z) - Realising and compressing quantum circuits with quantum reservoir
computing [2.834895018689047]
We show how a random network of quantum nodes can be used as a robust hardware for quantum computing.
Our network architecture induces quantum operations by optimising only a single layer of quantum nodes.
In the few-qubit regime, sequences of multiple quantum gates in quantum circuits can be compressed with a single operation.
arXiv Detail & Related papers (2020-03-21T03:29:16Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.