論文の概要: A Density Ratio Super Learner
- arxiv url: http://arxiv.org/abs/2408.04796v1
- Date: Fri, 9 Aug 2024 00:28:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-12 16:58:32.986333
- Title: A Density Ratio Super Learner
- Title(参考訳): 密度比超学習器
- Authors: Wencheng Wu, David Benkeser,
- Abstract要約: 我々は,スーパーラーニングに基づく新たな損失関数を持つ密度比のアンサンブル推定器を開発した。
この新たな損失関数が,超学習者構築に有効であることを示す。
- 参考スコア(独自算出の注目度): 0.9208007322096533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The estimation of the ratio of two density probability functions is of great interest in many statistics fields, including causal inference. In this study, we develop an ensemble estimator of density ratios with a novel loss function based on super learning. We show that this novel loss function is qualified for building super learners. Two simulations corresponding to mediation analysis and longitudinal modified treatment policy in causal inference, where density ratios are nuisance parameters, are conducted to show our density ratio super learner's performance empirically.
- Abstract(参考訳): 2つの密度確率関数の比の推定は、因果推論を含む多くの統計分野において大きな関心を持つ。
本研究では,スーパーラーニングに基づく新たな損失関数を持つ密度比のアンサンブル推定器を開発した。
この新たな損失関数が,超学習者構築に有効であることを示す。
密度比がニュアンスパラメータである因果推論における媒介分析および縦修正処理ポリシーに対応する2つのシミュレーションを行い、我々の超学習者の性能を実証的に示す。
関連論文リスト
- Double Debiased Covariate Shift Adaptation Robust to Density-Ratio Estimation [7.8856737627153874]
重み付けによる共変量シフト適応のための二重頑健な推定器を提案する。
我々の推定器は密度比推定誤差から生じるバイアスを低減する。
特に、密度比推定器または回帰関数が整合である場合、我々の推定器は整合性を保つ。
論文 参考訳(メタデータ) (2023-10-25T13:38:29Z) - Adaptive learning of density ratios in RKHS [3.047411947074805]
有限個の観測から2つの確率密度の比を推定することは、機械学習と統計学における中心的な問題である。
我々は、再生カーネルヒルベルト空間における真の密度比とモデルの間の正規化ブレグマン偏差を最小化する大規模な密度比推定法を分析する。
論文 参考訳(メタデータ) (2023-07-30T08:18:39Z) - Anomaly Detection with Variance Stabilized Density Estimation [49.46356430493534]
本稿では, 観測試料の確率を最大化するための分散安定化密度推定問題を提案する。
信頼性の高い異常検知器を得るために,分散安定化分布を学習するための自己回帰モデルのスペクトルアンサンブルを導入する。
我々は52のデータセットで広範なベンチマークを行い、我々の手法が最先端の結果につながることを示した。
論文 参考訳(メタデータ) (2023-06-01T11:52:58Z) - Mutual Wasserstein Discrepancy Minimization for Sequential
Recommendation [82.0801585843835]
逐次リコメンデーションのためのMutual WasserStein差分最小化MSteinに基づく新しい自己教師型学習フレームワークを提案する。
また,ワッサーシュタイン離散度測定に基づく新しい学習損失を提案する。
論文 参考訳(メタデータ) (2023-01-28T13:38:48Z) - MCD: Marginal Contrastive Discrimination for conditional density
estimation [0.0]
Marginal Contrastive Discrimination (MCD) は条件密度関数を目的変数の限界密度関数と密度関数の比の2つの因子に再構成する。
提案手法は,ほとんどの密度モデルや回帰データセットにおいて,既存の手法よりも大幅に優れていた。
論文 参考訳(メタデータ) (2022-06-03T14:22:29Z) - A Unified Framework for Multi-distribution Density Ratio Estimation [101.67420298343512]
バイナリ密度比推定(DRE)は多くの最先端の機械学習アルゴリズムの基礎を提供する。
ブレグマン最小化の発散の観点から一般的な枠組みを開発する。
我々のフレームワークはバイナリDREでそれらのフレームワークを厳格に一般化する手法に導かれることを示す。
論文 参考訳(メタデータ) (2021-12-07T01:23:20Z) - Density Ratio Estimation via Infinitesimal Classification [85.08255198145304]
そこで我々は, DRE-inftyを提案する。 DRE-inftyは, 密度比推定(DRE)を, より簡単なサブプロブレムに還元する手法である。
モンテカルロ法にインスパイアされ、中間ブリッジ分布の無限連続体を介して2つの分布の間を滑らかに補間する。
提案手法は,複雑な高次元データセット上での相互情報推定やエネルギーベースモデリングなどの下流タスクにおいて良好に動作することを示す。
論文 参考訳(メタデータ) (2021-11-22T06:26:29Z) - Featurized Density Ratio Estimation [82.40706152910292]
本研究では,2つの分布を推定前の共通特徴空間にマッピングするために,可逆生成モデルを活用することを提案する。
この偉業化は、学習された入力空間の密度比が任意に不正確な場合、潜在空間において密度が密接な関係をもたらす。
同時に、特徴写像の可逆性は、特徴空間で計算された比が入力空間で計算された比と同値であることを保証する。
論文 参考訳(メタデータ) (2021-07-05T18:30:26Z) - Meta-Learning for Relative Density-Ratio Estimation [59.75321498170363]
相対密度比推定(DRE)の既存の方法は、両方の密度から多くのインスタンスを必要とする。
本稿では,関係データセットの知識を用いて,相対密度比を数例から推定する,相対DREのメタラーニング手法を提案する。
提案手法の有効性を,相対的DRE,データセット比較,外乱検出の3つの問題を用いて実証的に実証した。
論文 参考訳(メタデータ) (2021-07-02T02:13:45Z) - Telescoping Density-Ratio Estimation [21.514983459970903]
我々は、テレスコープ密度比推定(TRE)という新しいフレームワークを導入する。
TREは高次元空間における高相似密度の比を推定できる。
実験により、TREは既存の単一比法よりも大幅に改善できることが示された。
論文 参考訳(メタデータ) (2020-06-22T12:55:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。