論文の概要: MCD: Marginal Contrastive Discrimination for conditional density
estimation
- arxiv url: http://arxiv.org/abs/2206.01592v1
- Date: Fri, 3 Jun 2022 14:22:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-06 17:38:37.695713
- Title: MCD: Marginal Contrastive Discrimination for conditional density
estimation
- Title(参考訳): MCD:条件密度推定のためのMarginal Contrastive Discrimination
- Authors: Benjamin Riu
- Abstract要約: Marginal Contrastive Discrimination (MCD) は条件密度関数を目的変数の限界密度関数と密度関数の比の2つの因子に再構成する。
提案手法は,ほとんどの密度モデルや回帰データセットにおいて,既存の手法よりも大幅に優れていた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of conditional density estimation, which is a major
topic of interest in the fields of statistical and machine learning. Our
method, called Marginal Contrastive Discrimination, MCD, reformulates the
conditional density function into two factors, the marginal density function of
the target variable and a ratio of density functions which can be estimated
through binary classification. Like noise-contrastive methods, MCD can leverage
state-of-the-art supervised learning techniques to perform conditional density
estimation, including neural networks. Our benchmark reveals that our method
significantly outperforms in practice existing methods on most density models
and regression datasets.
- Abstract(参考訳): 本稿では,統計学と機械学習の分野における関心の中心となる条件密度推定の問題について考察する。
本手法は境界コントラスト弁別法(mcd)と呼ばれ,条件密度関数を2つの因子,対象変数の限界密度関数,二元分類により推定可能な密度関数の比率に再構成する。
ノイズコントラスト法と同様に、MCDは最先端の教師付き学習技術を利用してニューラルネットワークを含む条件密度推定を行うことができる。
提案手法は,ほとんどの密度モデルや回帰データセットにおいて,既存の手法よりも優れていた。
関連論文リスト
- Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
異種データを用いた因果推論のための協調的逆確率スコア推定器を提案する。
異質性の増加に伴うメタアナリシスに基づく手法に対して,本手法は有意な改善を示した。
論文 参考訳(メタデータ) (2024-04-24T09:04:36Z) - Adaptive learning of density ratios in RKHS [3.047411947074805]
有限個の観測から2つの確率密度の比を推定することは、機械学習と統計学における中心的な問題である。
我々は、再生カーネルヒルベルト空間における真の密度比とモデルの間の正規化ブレグマン偏差を最小化する大規模な密度比推定法を分析する。
論文 参考訳(メタデータ) (2023-07-30T08:18:39Z) - Machine-Learned Exclusion Limits without Binning [0.0]
我々は、1次元信号と背景確率密度関数を抽出するためにカーネル密度推定器(KDE)を含むMLL法を拡張した。
本手法は,レプトン対に崩壊するエキゾチックヒッグス粒子の探索と,レプトン対に崩壊するZ'$ボソンの2例に適用する。
論文 参考訳(メタデータ) (2022-11-09T11:04:50Z) - Fast Kernel Density Estimation with Density Matrices and Random Fourier
Features [0.0]
カーネル密度推定 (KDE) は、最も広く使われている非パラメトリック密度推定法の一つである。
DMKDEは密度行列、量子力学的定式化、ランダムフーリエ特徴、明示的なカーネル近似を用いて密度推定を生成する。
DMKDEは、計算密度推定の競合と同等であり、高次元データ上で実行された場合の利点が示される。
論文 参考訳(メタデータ) (2022-08-02T02:11:10Z) - Density Ratio Estimation via Infinitesimal Classification [85.08255198145304]
そこで我々は, DRE-inftyを提案する。 DRE-inftyは, 密度比推定(DRE)を, より簡単なサブプロブレムに還元する手法である。
モンテカルロ法にインスパイアされ、中間ブリッジ分布の無限連続体を介して2つの分布の間を滑らかに補間する。
提案手法は,複雑な高次元データセット上での相互情報推定やエネルギーベースモデリングなどの下流タスクにおいて良好に動作することを示す。
論文 参考訳(メタデータ) (2021-11-22T06:26:29Z) - Density-Based Clustering with Kernel Diffusion [59.4179549482505]
単位$d$次元ユークリッド球のインジケータ関数に対応するナイーブ密度は、密度に基づくクラスタリングアルゴリズムで一般的に使用される。
局所分布特性と滑らかさの異なるデータに適応する新しいカーネル拡散密度関数を提案する。
論文 参考訳(メタデータ) (2021-10-11T09:00:33Z) - Featurized Density Ratio Estimation [82.40706152910292]
本研究では,2つの分布を推定前の共通特徴空間にマッピングするために,可逆生成モデルを活用することを提案する。
この偉業化は、学習された入力空間の密度比が任意に不正確な場合、潜在空間において密度が密接な関係をもたらす。
同時に、特徴写像の可逆性は、特徴空間で計算された比が入力空間で計算された比と同値であることを保証する。
論文 参考訳(メタデータ) (2021-07-05T18:30:26Z) - Meta-Learning for Relative Density-Ratio Estimation [59.75321498170363]
相対密度比推定(DRE)の既存の方法は、両方の密度から多くのインスタンスを必要とする。
本稿では,関係データセットの知識を用いて,相対密度比を数例から推定する,相対DREのメタラーニング手法を提案する。
提案手法の有効性を,相対的DRE,データセット比較,外乱検出の3つの問題を用いて実証的に実証した。
論文 参考訳(メタデータ) (2021-07-02T02:13:45Z) - Conditional Density Estimation via Weighted Logistic Regressions [0.30458514384586394]
非均一プロセスモデルの一般密度と可能性関数の関連性を示すパラメトリック条件密度推定法を提案する。
最大推定値は重み付けされたロジスティック回帰によって得ることができ、ブロックワイズ交互化スキームと局所ケースコントロールサンプリングを組み合わせることで計算を著しく緩和することができる。
論文 参考訳(メタデータ) (2020-10-21T11:08:25Z) - Rethink Maximum Mean Discrepancy for Domain Adaptation [77.2560592127872]
本論文は,(1)最大平均距離の最小化は,それぞれソースとクラス内距離の最大化に等しいが,その差を暗黙の重みと共同で最小化し,特徴判別性は低下する,という2つの本質的な事実を理論的に証明する。
いくつかのベンチマークデータセットの実験は、理論的な結果の有効性を証明しただけでなく、我々のアプローチが比較した最先端手法よりも大幅に向上できることを実証した。
論文 参考訳(メタデータ) (2020-07-01T18:25:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。