Counterfactual Explanations with Probabilistic Guarantees on their Robustness to Model Change
- URL: http://arxiv.org/abs/2408.04842v1
- Date: Fri, 9 Aug 2024 03:35:53 GMT
- Title: Counterfactual Explanations with Probabilistic Guarantees on their Robustness to Model Change
- Authors: Ignacy Stępka, Mateusz Lango, Jerzy Stefanowski,
- Abstract summary: Counterfactual explanations (CFEs) guide users on how to adjust inputs to machine learning models to achieve desired outputs.
Current methods addressing this issue often support only specific models or change types.
This paper proposes a novel approach for generating CFEs that provides probabilistic guarantees for any model and change type.
- Score: 4.239829789304117
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Counterfactual explanations (CFEs) guide users on how to adjust inputs to machine learning models to achieve desired outputs. While existing research primarily addresses static scenarios, real-world applications often involve data or model changes, potentially invalidating previously generated CFEs and rendering user-induced input changes ineffective. Current methods addressing this issue often support only specific models or change types, require extensive hyperparameter tuning, or fail to provide probabilistic guarantees on CFE robustness to model changes. This paper proposes a novel approach for generating CFEs that provides probabilistic guarantees for any model and change type, while offering interpretable and easy-to-select hyperparameters. We establish a theoretical framework for probabilistically defining robustness to model change and demonstrate how our BetaRCE method directly stems from it. BetaRCE is a post-hoc method applied alongside a chosen base CFE generation method to enhance the quality of the explanation beyond robustness. It facilitates a transition from the base explanation to a more robust one with user-adjusted probability bounds. Through experimental comparisons with baselines, we show that BetaRCE yields robust, most plausible, and closest to baseline counterfactual explanations.
Related papers
- Rigorous Probabilistic Guarantees for Robust Counterfactual Explanations [80.86128012438834]
We show for the first time that computing the robustness of counterfactuals with respect to plausible model shifts is NP-complete.
We propose a novel probabilistic approach which is able to provide tight estimates of robustness with strong guarantees.
arXiv Detail & Related papers (2024-07-10T09:13:11Z) - Verified Training for Counterfactual Explanation Robustness under Data
Shift [18.156341188646348]
Counterfactual explanations (CEs) enhance the interpretability of machine learning models by describing what changes to an input are necessary to change its prediction to a desired class.
Existing approaches generate CEs by focusing on a single, fixed model, and do not provide any formal guarantees on the CEs' future validity.
This paper introduces VeriTraCER, an approach that jointly trains a classifier and an explainer to explicitly consider the robustness of the generated CEs to small model shifts.
arXiv Detail & Related papers (2024-03-06T15:06:16Z) - Flexible and Robust Counterfactual Explanations with Minimal Satisfiable
Perturbations [56.941276017696076]
We propose a conceptually simple yet effective solution named Counterfactual Explanations with Minimal Satisfiable Perturbations (CEMSP)
CEMSP constrains changing values of abnormal features with the help of their semantically meaningful normal ranges.
Compared to existing methods, we conduct comprehensive experiments on both synthetic and real-world datasets to demonstrate that our method provides more robust explanations while preserving flexibility.
arXiv Detail & Related papers (2023-09-09T04:05:56Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
Conformal prediction is emerging as a popular paradigm for providing rigorous uncertainty quantification in machine learning.
In this paper, we extend conformal prediction to the federated learning setting.
We propose a weaker notion of partial exchangeability, better suited to the FL setting, and use it to develop the Federated Conformal Prediction framework.
arXiv Detail & Related papers (2023-05-27T19:57:27Z) - Error-based Knockoffs Inference for Controlled Feature Selection [49.99321384855201]
We propose an error-based knockoff inference method by integrating the knockoff features, the error-based feature importance statistics, and the stepdown procedure together.
The proposed inference procedure does not require specifying a regression model and can handle feature selection with theoretical guarantees.
arXiv Detail & Related papers (2022-03-09T01:55:59Z) - CC-Cert: A Probabilistic Approach to Certify General Robustness of
Neural Networks [58.29502185344086]
In safety-critical machine learning applications, it is crucial to defend models against adversarial attacks.
It is important to provide provable guarantees for deep learning models against semantically meaningful input transformations.
We propose a new universal probabilistic certification approach based on Chernoff-Cramer bounds.
arXiv Detail & Related papers (2021-09-22T12:46:04Z) - CARE: Coherent Actionable Recourse based on Sound Counterfactual
Explanations [0.0]
This paper introduces CARE, a modular explanation framework that addresses the model- and user-level desiderata.
As a model-agnostic approach, CARE generates multiple, diverse explanations for any black-box model.
arXiv Detail & Related papers (2021-08-18T15:26:59Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.