UGrid: An Efficient-And-Rigorous Neural Multigrid Solver for Linear PDEs
- URL: http://arxiv.org/abs/2408.04846v1
- Date: Fri, 9 Aug 2024 03:46:35 GMT
- Title: UGrid: An Efficient-And-Rigorous Neural Multigrid Solver for Linear PDEs
- Authors: Xi Han, Fei Hou, Hong Qin,
- Abstract summary: This paper articulates a mathematically rigorous neural solver for linear PDEs.
The proposed UGrid solver, built upon the principled integration of U-Net and MultiGrid, manifests a mathematically rigorous proof of both convergence and correctness.
- Score: 18.532617548168123
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Numerical solvers of Partial Differential Equations (PDEs) are of fundamental significance to science and engineering. To date, the historical reliance on legacy techniques has circumscribed possible integration of big data knowledge and exhibits sub-optimal efficiency for certain PDE formulations, while data-driven neural methods typically lack mathematical guarantee of convergence and correctness. This paper articulates a mathematically rigorous neural solver for linear PDEs. The proposed UGrid solver, built upon the principled integration of U-Net and MultiGrid, manifests a mathematically rigorous proof of both convergence and correctness, and showcases high numerical accuracy, as well as strong generalization power to various input geometry/values and multiple PDE formulations. In addition, we devise a new residual loss metric, which enables unsupervised training and affords more stability and a larger solution space over the legacy losses.
Related papers
- Physics-informed Neural Networks for Functional Differential Equations: Cylindrical Approximation and Its Convergence Guarantees [7.366405857677226]
We propose the first learning scheme for functional differential equations (FDEs)
FDEs play a fundamental role in physics, mathematics, and optimal control.
numerical approximations of FDEs have been developed, but they often oversimplify the solutions.
arXiv Detail & Related papers (2024-10-23T06:16:35Z) - Physics-informed deep learning and compressive collocation for high-dimensional diffusion-reaction equations: practical existence theory and numerics [5.380276949049726]
We develop and analyze an efficient high-dimensional Partial Differential Equations solver based on Deep Learning (DL)
We show, both theoretically and numerically, that it can compete with a novel stable and accurate compressive spectral collocation method.
arXiv Detail & Related papers (2024-06-03T17:16:11Z) - Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
We present the Universal PDE solver (Unisolver) capable of solving a wide scope of PDEs.
Our key finding is that a PDE solution is fundamentally under the control of a series of PDE components.
Unisolver achieves consistent state-of-the-art results on three challenging large-scale benchmarks.
arXiv Detail & Related papers (2024-05-27T15:34:35Z) - Spectral operator learning for parametric PDEs without data reliance [6.7083321695379885]
We introduce a novel operator learning-based approach for solving parametric partial differential equations (PDEs) without the need for data harnessing.
The proposed framework demonstrates superior performance compared to existing scientific machine learning techniques.
arXiv Detail & Related papers (2023-10-03T12:37:15Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs.
Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space.
LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks.
arXiv Detail & Related papers (2023-01-30T04:58:40Z) - Lie Point Symmetry Data Augmentation for Neural PDE Solvers [69.72427135610106]
We present a method, which can partially alleviate this problem, by improving neural PDE solver sample complexity.
In the context of PDEs, it turns out that we are able to quantitatively derive an exhaustive list of data transformations.
We show how it can easily be deployed to improve neural PDE solver sample complexity by an order of magnitude.
arXiv Detail & Related papers (2022-02-15T18:43:17Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - Semi-Implicit Neural Solver for Time-dependent Partial Differential
Equations [4.246966726709308]
We propose a neural solver to learn an optimal iterative scheme in a data-driven fashion for any class of PDEs.
We provide theoretical guarantees for the correctness and convergence of neural solvers analogous to conventional iterative solvers.
arXiv Detail & Related papers (2021-09-03T12:03:10Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - Solving inverse-PDE problems with physics-aware neural networks [0.0]
We propose a novel framework to find unknown fields in the context of inverse problems for partial differential equations.
We blend the high expressibility of deep neural networks as universal function estimators with the accuracy and reliability of existing numerical algorithms.
arXiv Detail & Related papers (2020-01-10T18:46:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.