Causal Discovery of Linear Non-Gaussian Causal Models with Unobserved Confounding
- URL: http://arxiv.org/abs/2408.04907v1
- Date: Fri, 9 Aug 2024 07:24:12 GMT
- Title: Causal Discovery of Linear Non-Gaussian Causal Models with Unobserved Confounding
- Authors: Daniela Schkoda, Elina Robeva, Mathias Drton,
- Abstract summary: We consider linear non-Gaussian structural equation models that involve latent confounding.
In this setting, the causal structure is identifiable, but, in general, it is not possible to identify the specific causal effects.
- Score: 1.6932009464531739
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider linear non-Gaussian structural equation models that involve latent confounding. In this setting, the causal structure is identifiable, but, in general, it is not possible to identify the specific causal effects. Instead, a finite number of different causal effects result in the same observational distribution. Most existing algorithms for identifying these causal effects use overcomplete independent component analysis (ICA), which often suffers from convergence to local optima. Furthermore, the number of latent variables must be known a priori. To address these issues, we propose an algorithm that operates recursively rather than using overcomplete ICA. The algorithm first infers a source, estimates the effect of the source and its latent parents on their descendants, and then eliminates their influence from the data. For both source identification and effect size estimation, we use rank conditions on matrices formed from higher-order cumulants. We prove asymptotic correctness under the mild assumption that locally, the number of latent variables never exceeds the number of observed variables. Simulation studies demonstrate that our method achieves comparable performance to overcomplete ICA even though it does not know the number of latents in advance.
Related papers
- A Versatile Causal Discovery Framework to Allow Causally-Related Hidden
Variables [28.51579090194802]
We introduce a novel framework for causal discovery that accommodates the presence of causally-related hidden variables almost everywhere in the causal network.
We develop a Rank-based Latent Causal Discovery algorithm, RLCD, that can efficiently locate hidden variables, determine their cardinalities, and discover the entire causal structure over both measured and hidden ones.
Experimental results on both synthetic and real-world personality data sets demonstrate the efficacy of the proposed approach in finite-sample cases.
arXiv Detail & Related papers (2023-12-18T07:57:39Z) - Structural restrictions in local causal discovery: identifying direct causes of a target variable [0.9208007322096533]
Learning a set of direct causes of a target variable from an observational joint distribution is a fundamental problem in science.
Here, we are only interested in identifying the direct causes of one target variable, not the full DAG.
This allows us to relax the identifiability assumptions and develop possibly faster and more robust algorithms.
arXiv Detail & Related papers (2023-07-29T18:31:35Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
We derive a likelihood characterisation for the overall data that leads us to extend a previous EM-based algorithm.
The new algorithm learns to approximate the (unidentifiability) region of model parameters from such mixed data sources.
It delivers interval approximations to counterfactual results, which collapse to points in the identifiable case.
arXiv Detail & Related papers (2022-12-06T12:42:11Z) - Active Bayesian Causal Inference [72.70593653185078]
We propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning.
ABCI jointly infers a posterior over causal models and queries of interest.
We show that our approach is more data-efficient than several baselines that only focus on learning the full causal graph.
arXiv Detail & Related papers (2022-06-04T22:38:57Z) - Causal Discovery in Linear Structural Causal Models with Deterministic
Relations [27.06618125828978]
We focus on the task of causal discovery form observational data.
We derive a set of necessary and sufficient conditions for unique identifiability of the causal structure.
arXiv Detail & Related papers (2021-10-30T21:32:42Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Causal Discovery in Knowledge Graphs by Exploiting Asymmetric Properties
of Non-Gaussian Distributions [3.1981440103815717]
We define a hybrid approach that allows us to discover cause-effect relationships in Knowledge Graphs.
The proposed approach is based around the finding of the instantaneous causal structure of a non-experimental matrix using a non-Gaussian model.
We use two different pre-existing algorithms, one for the causal discovery and the other for decomposing the Knowledge Graph.
arXiv Detail & Related papers (2021-06-02T09:33:05Z) - Deconfounded Score Method: Scoring DAGs with Dense Unobserved
Confounding [101.35070661471124]
We show that unobserved confounding leaves a characteristic footprint in the observed data distribution that allows for disentangling spurious and causal effects.
We propose an adjusted score-based causal discovery algorithm that may be implemented with general-purpose solvers and scales to high-dimensional problems.
arXiv Detail & Related papers (2021-03-28T11:07:59Z) - Causal Expectation-Maximisation [70.45873402967297]
We show that causal inference is NP-hard even in models characterised by polytree-shaped graphs.
We introduce the causal EM algorithm to reconstruct the uncertainty about the latent variables from data about categorical manifest variables.
We argue that there appears to be an unnoticed limitation to the trending idea that counterfactual bounds can often be computed without knowledge of the structural equations.
arXiv Detail & Related papers (2020-11-04T10:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.