AcousAF: Acoustic Sensing-Based Atrial Fibrillation Detection System for Mobile Phones
- URL: http://arxiv.org/abs/2408.04912v1
- Date: Fri, 9 Aug 2024 07:43:16 GMT
- Title: AcousAF: Acoustic Sensing-Based Atrial Fibrillation Detection System for Mobile Phones
- Authors: Xuanyu Liu, Haoxian Liu, Jiao Li, Zongqi Yang, Yi Huang, Jin Zhang,
- Abstract summary: Atrial fibrillation (AF) is characterized by irregular electrical impulses originating in the atria.
Current mobile-based AF detection systems offer a portable solution.
We present AcousAF, a novel AF detection system based on acoustic sensors of smartphones.
- Score: 6.927186681726127
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Atrial fibrillation (AF) is characterized by irregular electrical impulses originating in the atria, which can lead to severe complications and even death. Due to the intermittent nature of the AF, early and timely monitoring of AF is critical for patients to prevent further exacerbation of the condition. Although ambulatory ECG Holter monitors provide accurate monitoring, the high cost of these devices hinders their wider adoption. Current mobile-based AF detection systems offer a portable solution. However, these systems have various applicability issues, such as being easily affected by environmental factors and requiring significant user effort. To overcome the above limitations, we present AcousAF, a novel AF detection system based on acoustic sensors of smartphones. Particularly, we explore the potential of pulse wave acquisition from the wrist using smartphone speakers and microphones. In addition, we propose a well-designed framework comprised of pulse wave probing, pulse wave extraction, and AF detection to ensure accurate and reliable AF detection. We collect data from 20 participants utilizing our custom data collection application on the smartphone. Extensive experimental results demonstrate the high performance of our system, with 92.8% accuracy, 86.9% precision, 87.4% recall, and 87.1% F1 Score.
Related papers
- UbiHR: Resource-efficient Long-range Heart Rate Sensing on Ubiquitous Devices [9.971578670060564]
We present UbiHR, a ubiquitous device-based heart rate sensing system.
Key to UbiHR is a real-time long-range-temporal model enabling noise-independent heart rate recognition and display on commodity mobile devices.
arXiv Detail & Related papers (2024-10-25T03:28:19Z) - Respiratory Anomaly Detection using Reflected Infrared Light-wave
Signals [0.18641315013048293]
We present a non-contact respiratory anomaly detection method using incoherent light-wave signals reflected from the chest of a mechanical robot.
The developed system can be utilized at home or healthcare facilities as a smart, non-contact and discreet respiration monitoring method.
arXiv Detail & Related papers (2023-11-02T16:23:13Z) - Exploiting prompt learning with pre-trained language models for
Alzheimer's Disease detection [70.86672569101536]
Early diagnosis of Alzheimer's disease (AD) is crucial in facilitating preventive care and to delay further progression.
This paper investigates the use of prompt-based fine-tuning of PLMs that consistently uses AD classification errors as the training objective function.
arXiv Detail & Related papers (2022-10-29T09:18:41Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - Project Achoo: A Practical Model and Application for COVID-19 Detection
from Recordings of Breath, Voice, and Cough [55.45063681652457]
We propose a machine learning method to quickly triage COVID-19 using recordings made on consumer devices.
The approach combines signal processing methods with fine-tuned deep learning networks and provides methods for signal denoising, cough detection and classification.
We have also developed and deployed a mobile application that uses symptoms checker together with voice, breath and cough signals to detect COVID-19 infection.
arXiv Detail & Related papers (2021-07-12T08:07:56Z) - Detecting COVID-19 from Breathing and Coughing Sounds using Deep Neural
Networks [68.8204255655161]
We adapt an ensemble of Convolutional Neural Networks to classify if a speaker is infected with COVID-19 or not.
Ultimately, it achieves an Unweighted Average Recall (UAR) of 74.9%, or an Area Under ROC Curve (AUC) of 80.7% by ensembling neural networks.
arXiv Detail & Related papers (2020-12-29T01:14:17Z) - BayesBeat: Reliable Atrial Fibrillation Detection from Noisy
Photoplethysmography Data [2.369492853260497]
We propose a novel deep learning based approach, BayesBeat to infer AF risks from noisy PPG signals.
Our proposed method BayesBeat outperforms the existing state-of-the-art methods.
arXiv Detail & Related papers (2020-11-02T05:20:32Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z) - Personalized Deep Learning for Ventricular Arrhythmias Detection on
Medical IoT Systems [17.966382901357118]
Life-threatening ventricular arrhythmias (VA) are the leading cause of sudden cardiac death (SCD)
We propose the personalized computing framework for deep learning based VA detection on medical IoT systems.
We equip the system with real-time inference on both intracardiac and surface rhythm monitors.
arXiv Detail & Related papers (2020-08-18T17:41:58Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z) - DeepBeat: A multi-task deep learning approach to assess signal quality
and arrhythmia detection in wearable devices [0.0]
We develop a multi-task deep learning method to assess signal quality and arrhythmia event detection in wearable photoplethysmography devices for real-time detection of atrial fibrillation (AF)
We train our algorithm on over one million simulated unlabeled physiological signals and fine-tune on a curated dataset of over 500K labeled signals from over 100 individuals from 3 different wearable devices.
We show that two-stage training can help address the unbalanced data problem common to biomedical applications where large well-annotated datasets are scarce.
arXiv Detail & Related papers (2020-01-01T07:41:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.