UbiHR: Resource-efficient Long-range Heart Rate Sensing on Ubiquitous Devices
- URL: http://arxiv.org/abs/2410.19279v1
- Date: Fri, 25 Oct 2024 03:28:19 GMT
- Title: UbiHR: Resource-efficient Long-range Heart Rate Sensing on Ubiquitous Devices
- Authors: Haoyu Bian, Bin Guo, Sicong Liu, Yasan Ding, Shanshan Gao, Zhiwen Yu,
- Abstract summary: We present UbiHR, a ubiquitous device-based heart rate sensing system.
Key to UbiHR is a real-time long-range-temporal model enabling noise-independent heart rate recognition and display on commodity mobile devices.
- Score: 9.971578670060564
- License:
- Abstract: Ubiquitous on-device heart rate sensing is vital for high-stress individuals and chronic patients. Non-contact sensing, compared to contact-based tools, allows for natural user monitoring, potentially enabling more accurate and holistic data collection. However, in open and uncontrolled mobile environments, user movement and lighting introduce. Existing methods, such as curve-based or short-range deep learning recognition based on adjacent frames, strike the optimal balance between real-time performance and accuracy, especially under limited device resources. In this paper, we present UbiHR, a ubiquitous device-based heart rate sensing system. Key to UbiHR is a real-time long-range spatio-temporal model enabling noise-independent heart rate recognition and display on commodity mobile devices, along with a set of mechanisms for prompt and energy-efficient sampling and preprocessing. Diverse experiments and user studies involving four devices, four tasks, and 80 participants demonstrate UbiHR's superior performance, enhancing accuracy by up to 74.2\% and reducing latency by 51.2\%.
Related papers
- Scaling Wearable Foundation Models [54.93979158708164]
We investigate the scaling properties of sensor foundation models across compute, data, and model size.
Using a dataset of up to 40 million hours of in-situ heart rate, heart rate variability, electrodermal activity, accelerometer, skin temperature, and altimeter per-minute data from over 165,000 people, we create LSM.
Our results establish the scaling laws of LSM for tasks such as imputation, extrapolation, both across time and sensor modalities.
arXiv Detail & Related papers (2024-10-17T15:08:21Z) - OmniBuds: A Sensory Earable Platform for Advanced Bio-Sensing and On-Device Machine Learning [46.3331254985615]
Sensory earables have evolved from basic audio enhancement devices into sophisticated platforms for clinical-grade health monitoring and wellbeing management.
This paper introduces OmniBuds, an advanced sensory earable platform integrating multiple biosensors and onboard computation powered by a machine learning accelerator.
arXiv Detail & Related papers (2024-10-07T06:30:59Z) - AcousAF: Acoustic Sensing-Based Atrial Fibrillation Detection System for Mobile Phones [6.927186681726127]
Atrial fibrillation (AF) is characterized by irregular electrical impulses originating in the atria.
Current mobile-based AF detection systems offer a portable solution.
We present AcousAF, a novel AF detection system based on acoustic sensors of smartphones.
arXiv Detail & Related papers (2024-08-09T07:43:16Z) - Analyzing Participants' Engagement during Online Meetings Using Unsupervised Remote Photoplethysmography with Behavioral Features [50.82725748981231]
Engagement measurement finds application in healthcare, education, services.
Use of physiological and behavioral features is viable, but impracticality of traditional physiological measurement arises due to the need for contact sensors.
We demonstrate the feasibility of the unsupervised photoplethysmography (rmography) as an alternative for contact sensors.
arXiv Detail & Related papers (2024-04-05T20:39:16Z) - Deep Reinforcement Learning Empowered Activity-Aware Dynamic Health
Monitoring Systems [69.41229290253605]
Existing monitoring approaches were designed on the premise that medical devices track several health metrics concurrently.
This means that they report all relevant health values within that scope, which can result in excess resource use and the gathering of extraneous data.
We propose Dynamic Activity-Aware Health Monitoring strategy (DActAHM) for striking a balance between optimal monitoring performance and cost efficiency.
arXiv Detail & Related papers (2024-01-19T16:26:35Z) - Embedding Temporal Convolutional Networks for Energy-Efficient PPG-Based
Heart Rate Monitoring [17.155316991045765]
Photoplethysmography (volution) sensors allow for non-invasive and comfortable heart-rate (HR) monitoring.
Motion Artifacts (MAs) severely impact the monitoring accuracy, causing high variability in the skin-to-sensor interface.
We propose a computationally lightweight yet robust deep learning-based approach for PPG-based HR estimation.
We validate our approaches on two benchmark datasets, achieving as low as 3.84 Beats per Minute (BPM) of Mean Absolute Error (MAE) on PPGDalia.
arXiv Detail & Related papers (2022-03-01T17:04:28Z) - Physical Activity Recognition Based on a Parallel Approach for an
Ensemble of Machine Learning and Deep Learning Classifiers [0.0]
Human activity recognition (HAR) by wearable sensor devices embedded in the Internet of things (IOT) can play a significant role in remote health monitoring and emergency notification.
This study investigates a human activity recognition method of accrued decision accuracy and speed of execution to be applicable in healthcare.
arXiv Detail & Related papers (2021-03-02T16:50:52Z) - Real-time Webcam Heart-Rate and Variability Estimation with Clean Ground
Truth for Evaluation [9.883261192383612]
Remote photo-plethysmography (r) uses a camera to estimate a person's heart rate (HR)
HRV is a measure of the fine fluctuations in the intervals between heart beats.
We introduce a refined and efficient real-time r pipeline with novel filtering and motion suppression.
arXiv Detail & Related papers (2020-12-31T18:57:05Z) - Energy Aware Deep Reinforcement Learning Scheduling for Sensors
Correlated in Time and Space [62.39318039798564]
We propose a scheduling mechanism capable of taking advantage of correlated information.
The proposed mechanism is capable of determining the frequency with which sensors should transmit their updates.
We show that our solution can significantly extend the sensors' lifetime.
arXiv Detail & Related papers (2020-11-19T09:53:27Z) - AutoHR: A Strong End-to-end Baseline for Remote Heart Rate Measurement
with Neural Searching [76.4844593082362]
We investigate the reason why existing end-to-end networks perform poorly in challenging conditions and establish a strong baseline for remote HR measurement with architecture search (NAS)
Comprehensive experiments are performed on three benchmark datasets on both intra-temporal and cross-dataset testing.
arXiv Detail & Related papers (2020-04-26T05:43:21Z) - Optimised Convolutional Neural Networks for Heart Rate Estimation and
Human Activity Recognition in Wrist Worn Sensing Applications [3.8137985834223507]
We provide improved heart rate and human activity recognition simultaneously at low sample rates.
This simplifies hardware design and reduces costs and power budgets.
We apply two deep learning pipelines, one for human activity recognition and one for heart rate estimation.
arXiv Detail & Related papers (2020-03-30T11:44:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.