論文の概要: LiD-FL: Towards List-Decodable Federated Learning
- arxiv url: http://arxiv.org/abs/2408.04963v2
- Date: Thu, 15 Aug 2024 08:26:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 12:51:16.380073
- Title: LiD-FL: Towards List-Decodable Federated Learning
- Title(参考訳): LiD-FL: List-Decodable Federated Learningを目指す
- Authors: Hong Liu, Liren Shan, Han Bao, Ronghui You, Yuhao Yi, Jiancheng Lv,
- Abstract要約: 本稿では,中央サーバが敵のリストを維持できる,リスト記述可能なフェデレーション学習のためのアルゴリズムフレームワークを提案する。
実験結果から,提案アルゴリズムは様々な攻撃において悪意ある多数派に耐えうることが示された。
- 参考スコア(独自算出の注目度): 18.89910309677336
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning is often used in environments with many unverified participants. Therefore, federated learning under adversarial attacks receives significant attention. This paper proposes an algorithmic framework for list-decodable federated learning, where a central server maintains a list of models, with at least one guaranteed to perform well. The framework has no strict restriction on the fraction of honest workers, extending the applicability of Byzantine federated learning to the scenario with more than half adversaries. Under proper assumptions on the loss function, we prove a convergence theorem for our method. Experimental results, including image classification tasks with both convex and non-convex losses, demonstrate that the proposed algorithm can withstand the malicious majority under various attacks.
- Abstract(参考訳): フェデレーテッド・ラーニングは、多くの未検証参加者のいる環境でよく使用される。
そのため、対人攻撃による連合学習には大きな注意が払われる。
本稿では,リスト記述可能なフェデレーション学習のためのアルゴリズムフレームワークを提案する。このフレームワークでは,中央サーバがモデルのリストを維持でき,少なくとも1つの性能が保証されている。
この枠組みは、正直な労働者のごく一部に厳格な制限を持たず、ビザンツ連邦学習の適用範囲を半分以上の敵のシナリオにまで広げた。
損失関数の適切な仮定の下で、我々はこの方法の収束定理を証明した。
コンベックスと非凸の両方の損失を伴う画像分類タスクを含む実験結果から,提案アルゴリズムは様々な攻撃において悪意ある多数派に耐えうることを示した。
関連論文リスト
- Deep Metric Learning with Soft Orthogonal Proxies [1.823505080809275]
本稿では,プロキシにソフト直交性(SO)制約を導入する新しいアプローチを提案する。
提案手法では,DMLの目的と合わせて,画像からコンテキスト特徴を抽出するエンコーダとして,データ効率の良い画像変換器(DeiT)を利用する。
提案手法が最先端手法よりも有意なマージンで優れていることを示す。
論文 参考訳(メタデータ) (2023-06-22T17:22:15Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
対人訓練と連合学習の組み合わせは、望ましくない頑丈さの劣化につながる可能性がある。
我々は、Slack Federated Adversarial Training (SFAT)と呼ばれる新しいフレームワークを提案する。
各種ベンチマークおよび実世界のデータセットに対するSFATの合理性と有効性を検証する。
論文 参考訳(メタデータ) (2023-03-01T06:16:15Z) - Delving into the Adversarial Robustness of Federated Learning [41.409961662754405]
フェデレートラーニング(FL)では、モデルは敵の例に対して中心的に訓練されたモデルと同じくらい脆弱である。
FLシステムの精度と堅牢性を改善するために,DBFAT(Decision boundary based Federated Adversarial Training)と呼ばれる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-19T04:54:25Z) - Synergies between Disentanglement and Sparsity: Generalization and
Identifiability in Multi-Task Learning [79.83792914684985]
我々は,最大スパース基底予測器が不整合表現をもたらす条件を提供する新しい識別可能性の結果を証明した。
この理論的な結果から,両レベル最適化問題に基づくアンタングル表現学習の実践的アプローチを提案する。
論文 参考訳(メタデータ) (2022-11-26T21:02:09Z) - Security-Preserving Federated Learning via Byzantine-Sensitive Triplet
Distance [10.658882342481542]
フェデレートラーニング(FL)は一般的に、敵のエッジデバイスからのビザンチン攻撃に対して脆弱である。
そこで我々は, ダミーコントラストアグリゲーションという, 効果的なビザンチン・ロバストFLフレームワークを提案する。
最新技術であるビザンチン-レジリエントアグリゲーション法と比較して,性能が向上した。
論文 参考訳(メタデータ) (2022-10-29T07:20:02Z) - Fair Federated Learning via Bounded Group Loss [37.72259706322158]
本稿では,実証的公正なフェデレーション学習のための一般的なフレームワークを提案する。
我々は、有界群損失の概念を、群フェアネスに対する理論的に基底的なアプローチとして拡張する。
提案手法の収束保証と結果の正当性保証を提供する。
論文 参考訳(メタデータ) (2022-03-18T23:11:54Z) - Adversarial Robustness with Semi-Infinite Constrained Learning [177.42714838799924]
入力に対する深い学習は、安全クリティカルなドメインでの使用に関して深刻な疑問を提起している。
本稿では,この問題を緩和するために,Langevin Monte Carlo のハイブリッドトレーニング手法を提案する。
当社のアプローチは、最先端のパフォーマンスと堅牢性の間のトレードオフを軽減することができることを示す。
論文 参考訳(メタデータ) (2021-10-29T13:30:42Z) - Fault-Tolerant Federated Reinforcement Learning with Theoretical
Guarantee [25.555844784263236]
本稿では,ランダムなシステム障害や敵攻撃によるエージェントの半数未満に寛容な,最初のフェデレーション強化学習フレームワークを提案する。
すべての理論的結果は、様々なRLベンチマークタスクで実証的に検証される。
論文 参考訳(メタデータ) (2021-10-26T23:01:22Z) - A Low Rank Promoting Prior for Unsupervised Contrastive Learning [108.91406719395417]
提案手法は,従来の低階の促進をコントラスト学習の枠組みに効果的に組み込む新しい確率的グラフィカルモデルを構築する。
我々の仮説は、同じインスタンスクラスに属するすべてのサンプルが、小さな次元の同じ部分空間上にあることを明示的に要求する。
実証的な証拠は、提案アルゴリズムが複数のベンチマークにおける最先端のアプローチを明らかに上回っていることを示している。
論文 参考訳(メタデータ) (2021-08-05T15:58:25Z) - Secure Distributed Training at Scale [65.7538150168154]
ピアの存在下でのトレーニングには、ビザンティン寛容な特殊な分散トレーニングアルゴリズムが必要である。
本稿では,コミュニケーション効率を重視したセキュアな(ビザンチン耐性)分散トレーニングのための新しいプロトコルを提案する。
論文 参考訳(メタデータ) (2021-06-21T17:00:42Z) - Byzantine-resilient Decentralized Stochastic Gradient Descent [85.15773446094576]
分散学習システムのビザンチンレジリエンスに関する詳細な研究について述べる。
ビザンチンフォールトトレランスを用いた分散学習を支援する新しいアルゴリズムUBARを提案する。
論文 参考訳(メタデータ) (2020-02-20T05:11:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。