Generating novel experimental hypotheses from language models: A case study on cross-dative generalization
- URL: http://arxiv.org/abs/2408.05086v2
- Date: Mon, 28 Oct 2024 14:30:13 GMT
- Title: Generating novel experimental hypotheses from language models: A case study on cross-dative generalization
- Authors: Kanishka Misra, Najoung Kim,
- Abstract summary: We use LMs as simulated learners to derive novel experimental hypotheses to be tested with humans.
We find LMs to replicate known patterns of children's cross-dative generalization (CDG)
We propose a novel hypothesis that CDG is facilitated insofar as the features of the exposure context--in particular--are harmonically aligned.
- Score: 15.705978435313996
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Neural network language models (LMs) have been shown to successfully capture complex linguistic knowledge. However, their utility for understanding language acquisition is still debated. We contribute to this debate by presenting a case study where we use LMs as simulated learners to derive novel experimental hypotheses to be tested with humans. We apply this paradigm to study cross-dative generalization (CDG): productive generalization of novel verbs across dative constructions (she pilked me the ball/she pilked the ball to me)--acquisition of which is known to involve a large space of contextual features--using LMs trained on child-directed speech. We specifically ask: "what properties of the training exposure facilitate a novel verb's generalization to the (unmodeled) alternate construction?" To answer this, we systematically vary the exposure context in which a novel dative verb occurs in terms of the properties of the theme and recipient, and then analyze the LMs' usage of the novel verb in the unmodeled dative construction. We find LMs to replicate known patterns of children's CDG, as a precondition to exploring novel hypotheses. Subsequent simulations reveal a nuanced role of the features of the novel verbs' exposure context on the LMs' CDG. We find CDG to be facilitated when the first postverbal argument of the exposure context is pronominal, definite, short, and conforms to the prototypical animacy expectations of the exposure dative. These patterns are characteristic of harmonic alignment in datives, where the argument with features ranking higher on the discourse prominence scale tends to precede the other. This gives rise to a novel hypothesis that CDG is facilitated insofar as the features of the exposure context--in particular, its first postverbal argument--are harmonically aligned. We conclude by proposing future experiments that can test this hypothesis in children.
Related papers
- Analysis of Plan-based Retrieval for Grounded Text Generation [78.89478272104739]
hallucinations occur when a language model is given a generation task outside its parametric knowledge.
A common strategy to address this limitation is to infuse the language models with retrieval mechanisms.
We analyze how planning can be used to guide retrieval to further reduce the frequency of hallucinations.
arXiv Detail & Related papers (2024-08-20T02:19:35Z) - What Do Language Models Learn in Context? The Structured Task Hypothesis [89.65045443150889]
Large language models (LLMs) learn a novel task from in-context examples presented in a demonstration, termed in-context learning (ICL)
One popular hypothesis explains ICL by task selection.
Another popular hypothesis is that ICL is a form of meta-learning, i.e., the models learn a learning algorithm at pre-training time and apply it to the demonstration.
arXiv Detail & Related papers (2024-06-06T16:15:34Z) - Do Pre-Trained Language Models Detect and Understand Semantic Underspecification? Ask the DUST! [4.1970767174840455]
We study whether pre-trained language models (LMs) correctly identify and interpret underspecified sentences.
Our experiments show that when interpreting underspecified sentences, LMs exhibit little uncertainty, contrary to what theoretical accounts of underspecification would predict.
arXiv Detail & Related papers (2024-02-19T19:49:29Z) - Large Language Models Are Partially Primed in Pronoun Interpretation [6.024776891570197]
We investigate whether large language models (LLMs) display human-like referential biases using stimuli and procedures from real psycholinguistic experiments.
Recent psycholinguistic studies suggest that humans adapt their referential biases with recent exposure to referential patterns.
We find that InstructGPT adapts its pronominal interpretations in response to the frequency of referential patterns in the local discourse.
arXiv Detail & Related papers (2023-05-26T13:30:48Z) - SciMON: Scientific Inspiration Machines Optimized for Novelty [68.46036589035539]
We explore and enhance the ability of neural language models to generate novel scientific directions grounded in literature.
We take a dramatic departure with a novel setting in which models use as input background contexts.
We present SciMON, a modeling framework that uses retrieval of "inspirations" from past scientific papers.
arXiv Detail & Related papers (2023-05-23T17:12:08Z) - Are Representations Built from the Ground Up? An Empirical Examination
of Local Composition in Language Models [91.3755431537592]
Representing compositional and non-compositional phrases is critical for language understanding.
We first formulate a problem of predicting the LM-internal representations of longer phrases given those of their constituents.
While we would expect the predictive accuracy to correlate with human judgments of semantic compositionality, we find this is largely not the case.
arXiv Detail & Related papers (2022-10-07T14:21:30Z) - An Explanation of In-context Learning as Implicit Bayesian Inference [117.19809377740188]
We study the role of the pretraining distribution on the emergence of in-context learning.
We prove that in-context learning occurs implicitly via Bayesian inference of the latent concept.
We empirically find that scaling model size improves in-context accuracy even when the pretraining loss is the same.
arXiv Detail & Related papers (2021-11-03T09:12:33Z) - Schr\"odinger's Tree -- On Syntax and Neural Language Models [10.296219074343785]
Language models have emerged as NLP's workhorse, displaying increasingly fluent generation capabilities.
We observe a lack of clarity across numerous dimensions, which influences the hypotheses that researchers form.
We outline the implications of the different types of research questions exhibited in studies on syntax.
arXiv Detail & Related papers (2021-10-17T18:25:23Z) - NOPE: A Corpus of Naturally-Occurring Presuppositions in English [33.69537711677911]
We introduce the Naturally-Occurring Presuppositions in English (NOPE) Corpus.
We investigate the context-sensitivity of 10 different types of presupposition triggers.
We evaluate machine learning models' ability to predict human inferences.
arXiv Detail & Related papers (2021-09-14T22:03:23Z) - Explaining Question Answering Models through Text Generation [42.36596190720944]
Large pre-trained language models (LMs) have been shown to perform surprisingly well when fine-tuned on tasks that require commonsense and world knowledge.
It is difficult to explain what is the knowledge in the LM that allows it to make a correct prediction in end-to-end architectures.
We show on several tasks that our model reaches performance that is comparable to end-to-end architectures.
arXiv Detail & Related papers (2020-04-12T09:06:46Z) - A Benchmark for Systematic Generalization in Grounded Language
Understanding [61.432407738682635]
Humans easily interpret expressions that describe unfamiliar situations composed from familiar parts.
Modern neural networks, by contrast, struggle to interpret novel compositions.
We introduce a new benchmark, gSCAN, for evaluating compositional generalization in situated language understanding.
arXiv Detail & Related papers (2020-03-11T08:40:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.