論文の概要: Beyond the Eye: A Relational Model for Early Dementia Detection Using Retinal OCTA Images
- arxiv url: http://arxiv.org/abs/2408.05117v1
- Date: Fri, 9 Aug 2024 15:10:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-12 15:27:33.603904
- Title: Beyond the Eye: A Relational Model for Early Dementia Detection Using Retinal OCTA Images
- Title(参考訳): 眼の向こう側:網膜OCTA画像を用いた早期認知症検出のための関係モデル
- Authors: Shouyue Liu, Jinkui Hao, Yonghuai Liu, Huazhu Fu, Xinyu Guo, Shuting Zhang, Yitian Zhao,
- Abstract要約: 早期発症アルツハイマー病 (AD) と軽度認知障害 (MCI) をコントロールから識別するために, 網膜光コヒーレンストモグラフィー (OCTA) を用いた新しいPolarNet+を提案する。
提案手法は,まずカルト座標から極座標へのOCTA画像のマッピングを行う。
次に,包括的かつ臨床的に有用な情報抽出のための3次元画像のシリアライズと解析を行う多視点モジュールを提案する。
- 参考スコア(独自算出の注目度): 42.75763279888966
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early detection of dementia, such as Alzheimer's disease (AD) or mild cognitive impairment (MCI), is essential to enable timely intervention and potential treatment. Accurate detection of AD/MCI is challenging due to the high complexity, cost, and often invasive nature of current diagnostic techniques, which limit their suitability for large-scale population screening. Given the shared embryological origins and physiological characteristics of the retina and brain, retinal imaging is emerging as a potentially rapid and cost-effective alternative for the identification of individuals with or at high risk of AD. In this paper, we present a novel PolarNet+ that uses retinal optical coherence tomography angiography (OCTA) to discriminate early-onset AD (EOAD) and MCI subjects from controls. Our method first maps OCTA images from Cartesian coordinates to polar coordinates, allowing approximate sub-region calculation to implement the clinician-friendly early treatment of diabetic retinopathy study (ETDRS) grid analysis. We then introduce a multi-view module to serialize and analyze the images along three dimensions for comprehensive, clinically useful information extraction. Finally, we abstract the sequence embedding into a graph, transforming the detection task into a general graph classification problem. A regional relationship module is applied after the multi-view module to excavate the relationship between the sub-regions. Such regional relationship analyses validate known eye-brain links and reveal new discriminative patterns.
- Abstract(参考訳): アルツハイマー病(AD)や軽度認知障害(MCI)などの認知症の早期発見は、タイムリーな介入と潜在的治療を可能にするために不可欠である。
AD/MCIの正確な検出は、大規模な集団スクリーニングに適合する可能性を制限する、現在の診断技術の複雑さ、コスト、そしてしばしば侵襲的な性質のために困難である。
網膜と脳の胚の起源と生理的特徴が共有されていることから、網膜イメージングはADのリスクが高い個人を特定するための、迅速かつ費用対効果のある代替手段として出現している。
本稿では、早期発症AD(EOAD)とMCI患者を制御から識別するために、網膜光コヒーレンストモグラフィー(OCTA)を用いた新しいPolarNet+を提案する。
提案手法は,まずカルト座標から極座標へのOCTA画像のマッピングを行い,糖尿病網膜症研究(ETDRS)グリッド解析の早期治療を概説した。
次に,包括的かつ臨床的に有用な情報抽出のための3次元画像のシリアライズと解析を行う多視点モジュールを提案する。
最後に、グラフに埋め込まれたシーケンスを抽象化し、検出タスクを一般的なグラフ分類問題に変換する。
地域関係モジュールは、マルチビューモジュールの後に適用され、サブリージョン間の関係を発掘する。
このような地域関係分析は、既知の目脳リンクを検証し、新しい識別パターンを明らかにする。
関連論文リスト
- Polar-Net: A Clinical-Friendly Model for Alzheimer's Disease Detection
in OCTA Images [53.235117594102675]
オプティカルコヒーレンス・トモグラフィーは、網膜微小血管の画像化によってアルツハイマー病(AD)を検出するための有望なツールである。
我々はPolar-Netと呼ばれる新しいディープラーニングフレームワークを提案し、解釈可能な結果を提供し、臨床上の事前知識を活用する。
Polar-Netは既存の最先端の手法よりも優れており,網膜血管変化とADとの関連性について,より貴重な病理学的証拠を提供する。
論文 参考訳(メタデータ) (2023-11-10T11:49:49Z) - Diagnosing Alzheimer's Disease using Early-Late Multimodal Data Fusion
with Jacobian Maps [1.5501208213584152]
アルツハイマー病(英語: Alzheimer's disease、AD)は、老化に影響を及ぼす神経変性疾患である。
本稿では,自動特徴抽出とランダム森林のための畳み込みニューラルネットワークを利用する,効率的な早期融合(ELF)手法を提案する。
脳の容積の微妙な変化を検出するという課題に対処するために、画像をヤコビ領域(JD)に変換する。
論文 参考訳(メタデータ) (2023-10-25T19:02:57Z) - CACTUSS: Common Anatomical CT-US Space for US examinations [36.45569352490318]
腹部大動脈瘤(英: Abdominal aortic aneurysm, AAA)は、大動脈の一部が拡大し、その壁を弱め、血管を破裂させる血管疾患である。
近年の腹部CTデータセットは, 深部神経回路の訓練に有効である。
CACTUSSはCTとUSモダリティの間の仮想ブリッジとして機能し、自動AAAスクリーニングソノグラフィーを可能にする。
論文 参考訳(メタデータ) (2022-07-18T14:05:25Z) - An Algorithm for the Labeling and Interactive Visualization of the
Cerebrovascular System of Ischemic Strokes [59.116811751334225]
VirtualDSA++は、CTAスキャンで脳血管ツリーをセグメンテーションし、ラベル付けするために設計されたアルゴリズムである。
閉塞血管を同定するために,脳動脈のラベル付け機構を拡張した。
本稿では,そのモデルの全ノードにおける経路の反復的体系探索という一般的な概念を紹介し,新たな対話的特徴を実現する。
論文 参考訳(メタデータ) (2022-04-26T14:20:26Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
緑内障は症状が重くなるまで無症状のままでいるため、検出が困難である。
緑内障の早期診断は機能的,構造的,臨床的評価に基づいて行われることが多い。
ディープラーニング手法はこのジレンマを、マーカー識別段階をバイパスし、ハイレベルな情報を分析してデータを分類することで部分的に解決している。
論文 参考訳(メタデータ) (2021-10-04T16:06:49Z) - Facial Anatomical Landmark Detection using Regularized Transfer Learning
with Application to Fetal Alcohol Syndrome Recognition [24.27777060287004]
出生前アルコール曝露による胎児アルコール症候群(FAS)は、一連の頭蓋顔面異常を引き起こす可能性がある。
解剖学的ランドマーク検出は,FAS関連顔面異常の検出に重要である。
自然画像における顔のランドマーク検出のために設計された現在のディープラーニングに基づく熱マップ回帰法は、大きなデータセットが利用できることを前提としている。
我々は,大規模な顔認識データセットから学習したネットワークの知識を活用する,新たな正規化トランスファー学習手法を開発した。
論文 参考訳(メタデータ) (2021-09-12T11:05:06Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z) - Assignment Flow for Order-Constrained OCT Segmentation [0.0]
網膜層厚の同定は、患者ごとに個別に行う重要な課題である。
自動セグメンテーションモデルの構築は,医用画像処理分野において重要な課題となっている。
我々は、秩序に制約された3D OCT網膜細胞層セグメンテーションのための新しい、純粋にデータ駆動型テキスト幾何学的アプローチを提案する。
論文 参考訳(メタデータ) (2020-09-10T01:57:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。