論文の概要: An Explainable Transformer Model for Alzheimer's Disease Detection Using Retinal Imaging
- arxiv url: http://arxiv.org/abs/2507.04259v1
- Date: Sun, 06 Jul 2025 06:40:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:35.094118
- Title: An Explainable Transformer Model for Alzheimer's Disease Detection Using Retinal Imaging
- Title(参考訳): 網膜イメージングを用いたアルツハイマー病検出のための説明可能なトランスモデル
- Authors: Saeed Jamshidiha, Alireza Rezaee, Farshid Hajati, Mojtaba Golzan, Raymond Chiong,
- Abstract要約: アルツハイマー病(英: Alzheimer's disease、AD)は、世界中の何百万もの人に影響を及ぼす神経変性疾患である。
本研究では,網膜画像を用いたAD検出のための新しいトランスフォーマーアーキテクチャであるRetformerを提案する。
- 参考スコア(独自算出の注目度): 5.3785187022022845
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Alzheimer's disease (AD) is a neurodegenerative disorder that affects millions worldwide. In the absence of effective treatment options, early diagnosis is crucial for initiating management strategies to delay disease onset and slow down its progression. In this study, we propose Retformer, a novel transformer-based architecture for detecting AD using retinal imaging modalities, leveraging the power of transformers and explainable artificial intelligence. The Retformer model is trained on datasets of different modalities of retinal images from patients with AD and age-matched healthy controls, enabling it to learn complex patterns and relationships between image features and disease diagnosis. To provide insights into the decision-making process of our model, we employ the Gradient-weighted Class Activation Mapping algorithm to visualize the feature importance maps, highlighting the regions of the retinal images that contribute most significantly to the classification outcome. These findings are compared to existing clinical studies on detecting AD using retinal biomarkers, allowing us to identify the most important features for AD detection in each imaging modality. The Retformer model outperforms a variety of benchmark algorithms across different performance metrics by margins of up to 11\.
- Abstract(参考訳): アルツハイマー病(英: Alzheimer's disease、AD)は、世界中の何百万もの人に影響を及ぼす神経変性疾患である。
効果的な治療法がない場合、早期診断は、発症を遅らせ、進行を遅らせる管理戦略を開始するために不可欠である。
本研究では,網膜画像モダリティを用いたAD検出のための新しいトランスフォーマーアーキテクチャであるRetformerを提案し,トランスフォーマーのパワーと説明可能な人工知能を活用する。
Retformerモデルは、AD患者と年齢適合の健常者による網膜画像の異なるモダリティのデータセットに基づいてトレーニングされ、画像の特徴と疾患の診断の間の複雑なパターンと関係を学習することができる。
モデルの決定過程に関する洞察を得るために,重み付けされたクラスアクティベーションマッピングアルゴリズムを用いて特徴重要度マップを可視化し,分類結果に最も寄与する網膜画像の領域を強調した。
これらの知見は、網膜バイオマーカーを用いたAD検出に関する既存の臨床研究と比較され、各画像モダリティにおけるAD検出の最も重要な特徴を同定することができる。
Retformerモデルは、さまざまなパフォーマンス指標のベンチマークアルゴリズムを最大11倍のマージンで上回ります。
関連論文リスト
- Beyond the Eye: A Relational Model for Early Dementia Detection Using Retinal OCTA Images [43.73298205923969]
早期発症アルツハイマー病 (AD) と軽度認知障害 (MCI) をコントロールから識別するために, 網膜光コヒーレンストモグラフィー (OCTA) を用いた新しいPolarNet+を提案する。
提案手法は,まずカルト座標から極座標へのOCTA画像のマッピングを行う。
次に,包括的かつ臨床的に有用な情報抽出のための3次元画像のシリアライズと解析を行う多視点モジュールを提案する。
論文 参考訳(メタデータ) (2024-08-09T15:10:34Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - Exploiting Causality Signals in Medical Images: A Pilot Study with
Empirical Results [1.2400966570867322]
本稿では,ニューラルネットワークによる分類目的の画像から弱い因果信号を発見し,利用するための新しい手法を提案する。
このようにして、画像の1つの部分における特徴の存在が、画像の別の部分における他の特徴の出現にどのように影響するかをモデル化する。
提案手法は,畳み込みニューラルネットワークのバックボーンと因果係数抽出モジュールから構成される。
論文 参考訳(メタデータ) (2023-09-19T08:00:26Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
機能的磁気共鳴画像(fMRI)を軽度認知障害解析のための効果的な接続性にマッピングするために,脳画像から画像へのBIGG(Brain Imaging-to-graph generation)フレームワークを提案する。
発電機の階層変換器は、複数のスケールでノイズを推定するように設計されている。
ADNIデータセットの評価は,提案モデルの有効性と有効性を示す。
論文 参考訳(メタデータ) (2023-05-18T06:54:56Z) - ROCT-Net: A new ensemble deep convolutional model with improved spatial
resolution learning for detecting common diseases from retinal OCT images [0.0]
本稿では,OCT画像から網膜疾患を検出するために,新たな深層アンサンブル畳み込みニューラルネットワークを提案する。
本モデルは,2つの頑健な畳み込みモデルの学習アーキテクチャを用いて,リッチかつマルチレゾリューションな特徴を生成する。
2つのデータセットに関する実験と、他のよく知られた深層畳み込みニューラルネットワークとの比較により、アーキテクチャが分類精度を最大5%向上できることが証明された。
論文 参考訳(メタデータ) (2022-03-03T17:51:01Z) - Multi-Disease Detection in Retinal Imaging based on Ensembling
Heterogeneous Deep Learning Models [0.0]
網膜イメージングのための革新的なマルチディセーゼ検出パイプラインを提案する。
当社のパイプラインには、転送学習、クラス重み付け、リアルタイム画像増強、焦点損失利用などの最先端の戦略が含まれます。
論文 参考訳(メタデータ) (2021-03-26T18:02:17Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
基礎画像における参照糖尿病網膜症検出のための機械学習システムを提案する。
画像パッチから局所情報を抽出し,アテンション機構により効率的に組み合わせることで,高い分類精度を実現することができる。
我々は,現在入手可能な網膜画像データセットに対するアプローチを評価し,最先端の性能を示す。
論文 参考訳(メタデータ) (2021-03-02T13:14:15Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
未熟児網膜症(英: Retinopathy of Prematurity、ROP)は、主に体重の低い未熟児に影響を及ぼす眼疾患である。
網膜の血管の増殖を招き、視力喪失を招き、最終的には網膜剥離を招き、失明を引き起こす。
近年,ディープラーニングを用いて診断を自動化する試みが盛んに行われている。
本稿では,従来のモデルの成功を基盤として,オブジェクトセグメンテーションと畳み込みニューラルネットワーク(CNN)を組み合わせた新しいアーキテクチャを開発する。
提案システムでは,まず対象分割モデルを訓練し,画素レベルでの区切り線を識別し,その結果のマスクを追加の"カラー"チャネルとして付加する。
論文 参考訳(メタデータ) (2020-04-03T14:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。