論文の概要: A Hybrid RAG System with Comprehensive Enhancement on Complex Reasoning
- arxiv url: http://arxiv.org/abs/2408.05141v1
- Date: Fri, 9 Aug 2024 15:53:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-12 15:16:47.025240
- Title: A Hybrid RAG System with Comprehensive Enhancement on Complex Reasoning
- Title(参考訳): 複合推論における包括的強化型ハイブリッドRAGシステム
- Authors: Ye Yuan, Chengwu Liu, Jingyang Yuan, Gongbo Sun, Siqi Li, Ming Zhang,
- Abstract要約: Retrieval-augmented Generation (RAG) は、大規模言語モデルでその精度を高め、外部知識ベースを統合することで幻覚を低減できるフレームワークである。
本稿では,検索品質,拡張推論能力,精巧な数値能力など,総合的な最適化によって強化されたハイブリッドRAGシステムを提案する。
- 参考スコア(独自算出の注目度): 13.112610550392537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-augmented generation (RAG) is a framework enabling large language models (LLMs) to enhance their accuracy and reduce hallucinations by integrating external knowledge bases. In this paper, we introduce a hybrid RAG system enhanced through a comprehensive suite of optimizations that significantly improve retrieval quality, augment reasoning capabilities, and refine numerical computation ability. We refined the text chunks and tables in web pages, added attribute predictors to reduce hallucinations, conducted LLM Knowledge Extractor and Knowledge Graph Extractor, and finally built a reasoning strategy with all the references. We evaluated our system on the CRAG dataset through the Meta CRAG KDD Cup 2024 Competition. Both the local and online evaluations demonstrate that our system significantly enhances complex reasoning capabilities. In local evaluations, we have significantly improved accuracy and reduced error rates compared to the baseline model, achieving a notable increase in scores. In the meanwhile, we have attained outstanding results in online assessments, demonstrating the performance and generalization capabilities of the proposed system. The source code for our system is released in \url{https://gitlab.aicrowd.com/shizueyy/crag-new}.
- Abstract(参考訳): Retrieval-augmented Generation (RAG) は、大規模言語モデル(LLM)がそれらの精度を高め、外部知識ベースを統合することで幻覚を減らすことを可能にするフレームワークである。
本稿では,検索品質,拡張推論能力,数値計算能力の向上など,総合的な最適化によって強化されたハイブリッドRAGシステムを提案する。
我々はWebページのテキストチャンクとテーブルを洗練し、幻覚を減らす属性予測器を追加し、LLMナレッジ・エクストラクタとナレッジ・グラフ・エクストラクタを実行し、最後にすべての参照で推論戦略を構築した。
我々は,メタCRAG KDD Cup 2024コンペティションを通じてCRAGデータセットのシステム評価を行った。
局所評価とオンライン評価の両方で,我々のシステムは複雑な推論能力を大幅に向上させることを示した。
局所評価では,ベースラインモデルと比較して精度が大幅に向上し,誤差率も大幅に低下し,スコアの顕著な増加を実現した。
一方,提案システムの性能と一般化能力を実証し,オンラインアセスメントにおける卓越した成果を得た。
我々のシステムのソースコードは \url{https://gitlab.aicrowd.com/shizueyy/crag-new} で公開されている。
関連論文リスト
- TrustRAG: An Information Assistant with Retrieval Augmented Generation [73.84864898280719]
TrustRAGは、インデックス付け、検索、生成という3つの視点から、acRAGを強化する新しいフレームワークである。
我々はTrustRAGフレームワークをオープンソース化し、抜粋ベースの質問応答タスク用に設計されたデモスタジオを提供する。
論文 参考訳(メタデータ) (2025-02-19T13:45:27Z) - RAG-Reward: Optimizing RAG with Reward Modeling and RLHF [8.911260109659489]
Retrieval-augmented Generation (RAG)は、関連知識と最新の知識でLarge Language Models (LLM)を強化する。
RAG最適化のための強化学習における報酬モデルの役割は未定である。
報酬モデルを開発するためのフレームワークである textbfRAG-Reward を導入する。
論文 参考訳(メタデータ) (2025-01-22T22:59:19Z) - XRAG: eXamining the Core -- Benchmarking Foundational Components in Advanced Retrieval-Augmented Generation [37.78210992036775]
Retrieval-augmented Generation (RAG) は、Large Language Models (LLMs) の生成能力と関連するデータの検索を相乗化する
我々は,高度なRAGモジュールの基本コンポーネントの性能を徹底的に評価する,オープンソースのモジュールであるXRAGを紹介する。
論文 参考訳(メタデータ) (2024-12-20T03:37:07Z) - Unanswerability Evaluation for Retrieval Augmented Generation [74.3022365715597]
UAEval4RAGは、RAGシステムが解答不能なクエリを効果的に処理できるかどうかを評価するために設計されたフレームワークである。
我々は、6つの未解決カテゴリを持つ分類を定義し、UAEval4RAGは、多様で挑戦的なクエリを自動的に合成する。
論文 参考訳(メタデータ) (2024-12-16T19:11:55Z) - Semantic Tokens in Retrieval Augmented Generation [0.0]
本稿では,確率的RAGシステムと決定論的に検証可能な応答のギャップを埋めるための評価モジュールを導入した新しい比較RAGシステムを提案する。
このフレームワークは、高い精度と検証可能性を必要とする領域において、より信頼性が高くスケーラブルな質問応答アプリケーションを実現する。
論文 参考訳(メタデータ) (2024-12-03T16:52:06Z) - SFR-RAG: Towards Contextually Faithful LLMs [57.666165819196486]
Retrieval Augmented Generation (RAG) は、外部コンテキスト情報を大言語モデル(LLM)と統合し、事実の精度と妥当性を高めるパラダイムである。
SFR-RAG(SFR-RAG)について述べる。
また、複数の人気かつ多様なRAGベンチマークをコンパイルする新しい評価フレームワークであるConBenchについても紹介する。
論文 参考訳(メタデータ) (2024-09-16T01:08:18Z) - WeKnow-RAG: An Adaptive Approach for Retrieval-Augmented Generation Integrating Web Search and Knowledge Graphs [10.380692079063467]
本稿では,Web検索と知識グラフを統合したWeKnow-RAGを提案する。
まず,知識グラフの構造化表現と高次ベクトル検索の柔軟性を組み合わせることで,LLM応答の精度と信頼性を向上させる。
提案手法は,情報検索の効率と精度を効果的にバランスさせ,全体の検索プロセスを改善する。
論文 参考訳(メタデータ) (2024-08-14T15:19:16Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [69.4501863547618]
本稿では,様々なシナリオにまたがってRAGシステムを評価するためのフレームワークであるRAGvalを紹介する。
事実の正確性に着目し, 完全性, 幻覚, 不適切性の3つの新しい指標を提案する。
実験結果から, RAGEvalは, 生成した試料の明瞭度, 安全性, 適合性, 豊かさにおいて, ゼロショット法とワンショット法より優れていた。
論文 参考訳(メタデータ) (2024-08-02T13:35:11Z) - Speculative RAG: Enhancing Retrieval Augmented Generation through Drafting [68.90949377014742]
Speculative RAG(投機的RAG)は、より大規模なジェネラリストLMを利用して、より小さな蒸留専門のLMによって並列に生成された複数のRAGドラフトを効率よく検証するフレームワークである。
提案手法は,より小さな専門家のLMにドラフト作成を委譲することでRAGを加速し,より大きなジェネラリストのLMがドラフトに1回の検証パスを実行する。
PubHealthの従来のRAGシステムと比較して、レイテンシを51%削減しながら、最大12.97%の精度向上を実現している。
論文 参考訳(メタデータ) (2024-07-11T06:50:19Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の能力を高める技術である。
本稿では,大規模かつ包括的なベンチマークを構築し,様々なRAGアプリケーションシナリオにおけるRAGシステムのすべてのコンポーネントを評価する。
論文 参考訳(メタデータ) (2024-01-30T14:25:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。