論文の概要: Neuromorphic Keyword Spotting with Pulse Density Modulation MEMS Microphones
- arxiv url: http://arxiv.org/abs/2408.05156v1
- Date: Fri, 9 Aug 2024 16:27:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-12 15:16:47.003230
- Title: Neuromorphic Keyword Spotting with Pulse Density Modulation MEMS Microphones
- Title(参考訳): パルス密度変調MEMSマイクロホンを用いたニューロモルフィックキーワードスポッティング
- Authors: Sidi Yaya Arnaud Yarga, Sean U. N. Wood,
- Abstract要約: キーワードスポッティングタスクには、事前に定義された単語を検出するための継続的オーディオストリーム監視が含まれる。
ニューロモルフィックデバイスはこのエネルギー課題に効果的に対処する。
マイクロホンとSNNの直接接続を提案する。
システムはGoogle Speech Commandデータセットで91.54%の精度を達成した。
- 参考スコア(独自算出の注目度): 0.25782420501870285
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The Keyword Spotting (KWS) task involves continuous audio stream monitoring to detect predefined words, requiring low energy devices for continuous processing. Neuromorphic devices effectively address this energy challenge. However, the general neuromorphic KWS pipeline, from microphone to Spiking Neural Network (SNN), entails multiple processing stages. Leveraging the popularity of Pulse Density Modulation (PDM) microphones in modern devices and their similarity to spiking neurons, we propose a direct microphone-to-SNN connection. This approach eliminates intermediate stages, notably reducing computational costs. The system achieved an accuracy of 91.54\% on the Google Speech Command (GSC) dataset, surpassing the state-of-the-art for the Spiking Speech Command (SSC) dataset which is a bio-inspired encoded GSC. Furthermore, the observed sparsity in network activity and connectivity indicates potential for remarkably low energy consumption in a neuromorphic device implementation.
- Abstract(参考訳): キーワードスポッティング(KWS)タスクは、事前に定義された単語を検出するために、連続的なオーディオストリーム監視を伴い、連続処理のために低エネルギーデバイスを必要とする。
ニューロモルフィックデバイスはこのエネルギー課題に効果的に対処する。
しかしながら、マイクロホンからスパイキングニューラルネットワーク(SNN)まで、一般的なニューロモルフィックKWSパイプラインは、複数の処理段階を必要とする。
現代のデバイスにおけるパルス密度変調(PDM)マイクロフォンの人気と、スパイキングニューロンとの類似性を活用し、直接マイクロホン-SNN接続を提案する。
このアプローチは中間段階を排除し、特に計算コストを削減している。
このシステムはGoogle Speech Command(GSC)データセットで91.54\%の精度を達成し、バイオインスパイアされたGSCであるSpking Speech Command(SSC)データセットの最先端技術を上回った。
さらに,ネットワーク活動と接続性の変化が観察されたことにより,ニューロモルフィックデバイス実装におけるエネルギー消費が著しく低くなる可能性が示唆された。
関連論文リスト
- Hybrid Spiking Neural Networks for Low-Power Intra-Cortical Brain-Machine Interfaces [42.72938925647165]
皮質内脳-機械界面(iBMI)は麻痺患者の生活を劇的に改善する可能性がある。
現在のiBMIは、ハードウェアと配線が大きすぎるため、スケーラビリティとモビリティの制限に悩まされている。
無線iBMIにおける組込みニューラルデコーディングのためのハイブリッドスパイキングニューラルネットワークについて検討している。
論文 参考訳(メタデータ) (2024-09-06T17:48:44Z) - sVAD: A Robust, Low-Power, and Light-Weight Voice Activity Detection
with Spiking Neural Networks [51.516451451719654]
スパイキングニューラルネットワーク(SNN)は生物学的に妥当で、電力効率が高いことが知られている。
本稿では sVAD と呼ばれる新しい SNN ベースの音声活動検出モデルを提案する。
SincNetと1D畳み込みによる効果的な聴覚特徴表現を提供し、アテンション機構による雑音の堅牢性を向上させる。
論文 参考訳(メタデータ) (2024-03-09T02:55:44Z) - Single Neuromorphic Memristor closely Emulates Multiple Synaptic
Mechanisms for Energy Efficient Neural Networks [71.79257685917058]
我々はこれらのシナプス機能を本質的にエミュレートするSrTiO3に基づく膜状ナノデバイスを実証する。
これらのメムリスタは、安定かつエネルギー効率の良い運転を可能にする非定常低導電系で機能する。
論文 参考訳(メタデータ) (2024-02-26T15:01:54Z) - Stochastic Domain Wall-Magnetic Tunnel Junction Artificial Neurons for
Noise-Resilient Spiking Neural Networks [0.0]
本稿では,電圧依存性の確率発火を伴うDW-MTJニューロンについて述べる。
トレーニング中の検証精度は、理想的な統合およびファイアデバイスに匹敵することを示した。
本研究は、DW-MTJデバイスを用いて、エッジ上のニューロモルフィックコンピューティングに適した耐雑音性ネットワークを構築することができることを示す。
論文 参考訳(メタデータ) (2023-04-10T18:00:26Z) - Online Transformers with Spiking Neurons for Fast Prosthetic Hand
Control [1.6114012813668934]
本稿では,自己注意機構の代わりにスライディングウィンドウアテンション機構を用いる。
この機構は、入力とターゲット間の有限範囲依存性を持つ連続的な信号に対してより効率的であることを示す。
本研究の結果は,スムーズな義手制御のためのsEMG信号の正確かつ高速なオンライン処理を約束するものである。
論文 参考訳(メタデータ) (2023-03-21T13:59:35Z) - Surrogate Gradient Spiking Neural Networks as Encoders for Large
Vocabulary Continuous Speech Recognition [91.39701446828144]
スパイクニューラルネットワークは, 代理勾配法を用いて, 通常のリカレントニューラルネットワークのように訓練可能であることを示す。
彼らは音声コマンド認識タスクについて有望な結果を示した。
繰り返し発生する非スパイキングとは対照的に、ゲートを使わずに爆発する勾配問題に対して堅牢性を示す。
論文 参考訳(メタデータ) (2022-12-01T12:36:26Z) - Intrinsic Spike Timing Dependent Plasticity in Stochastic Magnetic
Tunnel Junctions Mediated by Heat Dynamics [0.0]
ニューロモルフィックコンピューティングは、固体デバイスや回路を用いて生物学的ニューロンやシナプスの挙動を模倣することを目的としている。
磁気トンネル接合(MTJ)装置における生体シナプスのスパイクタイミング依存塑性(STDP)挙動を実装する手法を提案する。
論文 参考訳(メタデータ) (2021-08-28T18:02:01Z) - Neural Network-based Virtual Microphone Estimator [111.79608275698274]
ニューラルネットワークを用いた仮想マイクロホン推定器(NN-VME)を提案する。
NN-VMEは、最近の時間領域ニューラルネットワークの正確な推定能力を利用して、仮想マイクロホン信号を時間領域内で直接推定する。
CHiME-4コーパスの実験結果から,提案したNN-VMEは実録音においても高い仮想マイクロホン推定性能が得られることが示された。
論文 参考訳(メタデータ) (2021-01-12T06:30:24Z) - TinySpeech: Attention Condensers for Deep Speech Recognition Neural
Networks on Edge Devices [71.68436132514542]
エッジ上でのオンデバイス音声認識のための低フットプリント,高効率深層ニューラルネットワーク構築のためのアテンションコンデンサの概念を紹介する。
その有効性を説明するために,デバイス上での音声認識に適した低精度深層ニューラルネットワークTinySpeechを導入する。
論文 参考訳(メタデータ) (2020-08-10T16:34:52Z) - Multi-Tones' Phase Coding (MTPC) of Interaural Time Difference by
Spiking Neural Network [68.43026108936029]
雑音の多い実環境下での正確な音像定位のための純粋スパイクニューラルネットワーク(SNN)に基づく計算モデルを提案する。
このアルゴリズムを,マイクロホンアレイを用いたリアルタイムロボットシステムに実装する。
実験の結果, 平均誤差方位は13度であり, 音源定位に対する他の生物学的に妥当なニューロモルフィックアプローチの精度を上回っていることがわかった。
論文 参考訳(メタデータ) (2020-07-07T08:22:56Z) - Convolutional-Recurrent Neural Networks on Low-Power Wearable Platforms
for Cardiac Arrhythmia Detection [0.18459705687628122]
マイクロコントローラと低消費電力プロセッサで動作するニューラルネットワークの推論に焦点を当てる。
心不整脈を検出・分類するために既存の畳み込みリカレントニューラルネットワークを適用した。
メモリフットプリントは195.6KB、スループットは33.98MOps/sである。
論文 参考訳(メタデータ) (2020-01-08T10:35:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。