論文の概要: Cross-Domain Learning for Video Anomaly Detection with Limited Supervision
- arxiv url: http://arxiv.org/abs/2408.05191v1
- Date: Fri, 9 Aug 2024 17:28:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-12 15:05:23.689298
- Title: Cross-Domain Learning for Video Anomaly Detection with Limited Supervision
- Title(参考訳): 限定スーパービジョンによるビデオ異常検出のためのクロスドメイン学習
- Authors: Yashika Jain, Ali Dabouei, Min Xu,
- Abstract要約: ビデオ異常検出(VAD)は、監視ビデオにおけるセキュリティ脅威などの異常事象の識別を自動化する。
既存のドメイン間VADメソッドは教師なし学習に重点を置いており、結果として実世界の期待に届かないパフォーマンスをもたらす。
本稿では, 予測バイアスを推定し, 予測不確実性を用いて学習を適応的に最小化することにより, トレーニング中に外部データを組み込んだ, クロスドメイン学習(CDL)の枠組みを新たに導入する。
- 参考スコア(独自算出の注目度): 12.290352736331602
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video Anomaly Detection (VAD) automates the identification of unusual events, such as security threats in surveillance videos. In real-world applications, VAD models must effectively operate in cross-domain settings, identifying rare anomalies and scenarios not well-represented in the training data. However, existing cross-domain VAD methods focus on unsupervised learning, resulting in performance that falls short of real-world expectations. Since acquiring weak supervision, i.e., video-level labels, for the source domain is cost-effective, we conjecture that combining it with external unlabeled data has notable potential to enhance cross-domain performance. To this end, we introduce a novel weakly-supervised framework for Cross-Domain Learning (CDL) in VAD that incorporates external data during training by estimating its prediction bias and adaptively minimizing that using the predicted uncertainty. We demonstrate the effectiveness of the proposed CDL framework through comprehensive experiments conducted in various configurations on two large-scale VAD datasets: UCF-Crime and XD-Violence. Our method significantly surpasses the state-of-the-art works in cross-domain evaluations, achieving an average absolute improvement of 19.6% on UCF-Crime and 12.87% on XD-Violence.
- Abstract(参考訳): ビデオ異常検出(VAD)は、監視ビデオにおけるセキュリティ脅威などの異常事象の識別を自動化する。
実世界のアプリケーションでは、VADモデルはクロスドメイン設定で効果的に動作し、トレーニングデータによく表現されていない稀な異常やシナリオを特定する必要がある。
しかし、既存のクロスドメインのVADメソッドは教師なし学習に重点を置いており、結果として実世界の期待に届かないパフォーマンスをもたらす。
ソースドメインの映像レベルラベルは, 管理の弱さ, すなわちコスト効率が低いことから, 外部ラベル付きデータと組み合わせることで, クロスドメインのパフォーマンス向上に寄与する可能性が示唆された。
そこで本研究では, 予測バイアスを推定し, 予測不確実性を用いて学習を適応的に最小化することにより, 学習中の外部データを組み込んだ, VADにおけるクロスドメイン学習(CDL)の枠組みを新たに導入する。
UCF-Crime と XD-Violence の2つの大規模VADデータセット上で,様々な構成で実施した総合的な実験を通じて,提案した CDL フレームワークの有効性を実証する。
UCF-Crimeでは平均19.6%,XD-Violenceでは12.87%の絶対改善を実現した。
関連論文リスト
- Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Domain Adaptation with Adversarial Training on Penultimate Activations [82.9977759320565]
教師なし領域適応(Unsupervised Domain Adaptation, UDA)の重要な目的は、ラベルなし対象データに対するモデル予測の信頼性を高めることである。
我々は,この戦略が,入力画像や中間特徴に対する敵対的訓練よりも予測信頼性を高める目的と,より効率的で相関性が高いことを示す。
論文 参考訳(メタデータ) (2022-08-26T19:50:46Z) - Deep Unsupervised Domain Adaptation: A Review of Recent Advances and
Perspectives [16.68091981866261]
対象領域のデータの性能低下に対応するために、教師なし領域適応(UDA)を提案する。
UDAは、自然言語処理、ビデオ解析、自然言語処理、時系列データ分析、医用画像解析など、有望な成果を上げている。
論文 参考訳(メタデータ) (2022-08-15T20:05:07Z) - On Certifying and Improving Generalization to Unseen Domains [87.00662852876177]
ドメインの一般化は、テスト時に遭遇した見知らぬドメインのパフォーマンスが高いモデルを学ぶことを目的としています。
いくつかのベンチマークデータセットを使用して、DGアルゴリズムを包括的に評価することは困難である。
我々は,任意のDG手法の最悪の性能を効率的に証明できる普遍的な認証フレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-24T16:29:43Z) - Boosting Cross-Domain Speech Recognition with Self-Supervision [35.01508881708751]
自動音声認識(ASR)のクロスドメイン性能は,トレーニングとテストのミスマッチにより著しく損なわれる可能性がある。
従来, 自己監督学習 (SSL) や擬似ラベル学習 (PL) は, 未ラベルデータの自己監督を利用してUDAに有効であることが示された。
この研究は、事前学習および微調整のパラダイムにおいて、ラベルなしデータを完全に活用する体系的なUDAフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-20T14:02:53Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
本研究では,DDF(Domain Disentanglement Faster-RCNN)を設計し,タスク学習のための特徴のソース固有情報を排除した。
DDF法は,グローバルトリプルト・ディアンタングルメント(GTD)モジュールとインスタンス類似性・ディアンタングルメント(ISD)モジュールを用いて,グローバルおよびローカルステージでの機能ディアンタングルを容易にする。
提案手法は,4つのUDAオブジェクト検出タスクにおいて最先端の手法より優れており,広い適用性で有効であることが実証された。
論文 参考訳(メタデータ) (2022-01-06T05:43:01Z) - Boosting the Generalization Capability in Cross-Domain Few-shot Learning
via Noise-enhanced Supervised Autoencoder [23.860842627883187]
我々は、新しいノイズ強調型教師付きオートエンコーダ(NSAE)を用いて、特徴分布のより広範なバリエーションを捉えるようモデルに教える。
NSAEは入力を共同で再構築し、入力のラベルと再構成されたペアを予測することによってモデルを訓練する。
また、NSAE構造を利用して、より適応性を高め、対象領域の分類性能を向上させる2段階の微調整手順を提案する。
論文 参考訳(メタデータ) (2021-08-11T04:45:56Z) - Robustified Domain Adaptation [13.14535125302501]
非教師付きドメイン適応(Unsupervised domain adapt, UDA)は、ラベル付きソースドメインからラベル付きターゲットドメインへの知識伝達に広く使用される。
UDAにおける避けられないドメイン分布の偏りは、ターゲットドメインの堅牢性をモデル化するための重要な障壁である。
頑健な UDA モデルをトレーニングするための新しいクラス一貫性のないunsupervised Domain Adaptation (CURDA) フレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-18T22:21:54Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
半教師付きドメイン適応(Semi-DA)の設定の下で不変表現とリスクを同時に学習することを目的とした最初の手法を提案する。
共同で textbfLearning textbfInvariant textbfRepresentations と textbfRisks の LIRR アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-10-09T15:42:35Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
個人再識別のための教師なし領域適応手法を提案する。
実験結果から,ktCUDA法とSHRED法は,再同定性能において,+5.7 mAPの平均的改善を実現することがわかった。
論文 参考訳(メタデータ) (2020-01-14T17:43:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。