論文の概要: HistoKernel: Whole Slide Image Level Maximum Mean Discrepancy Kernels for Pan-Cancer Predictive Modelling
- arxiv url: http://arxiv.org/abs/2408.05195v1
- Date: Fri, 9 Aug 2024 17:40:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-12 15:05:23.682442
- Title: HistoKernel: Whole Slide Image Level Maximum Mean Discrepancy Kernels for Pan-Cancer Predictive Modelling
- Title(参考訳): HistoKernel:Pan-Cancer予測モデルのための全スライド画像レベル最大値離散カーネル
- Authors: Piotr Keller, Muhammad Dawood, Brinder Singh Chohan, Fayyaz ul Amir Afsar Minhas,
- Abstract要約: 計算病理学(CPath)における機械学習は、WSI(Whole Slide Images)からパッチレベルの予測を集約して、生存予測や薬物効果予測といった重要なタスクのためのWSIレベルの予測スコアを生成する。
我々は、下流予測タスクにおける予測性能を向上させるために、WSI間の分布類似性を測定する新しいカーネルであるHisto Kernelを紹介する。
- 参考スコア(独自算出の注目度): 0.48748194765816943
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Machine learning in computational pathology (CPath) often aggregates patch-level predictions from multi-gigapixel Whole Slide Images (WSIs) to generate WSI-level prediction scores for crucial tasks such as survival prediction and drug effect prediction. However, current methods do not explicitly characterize distributional differences between patch sets within WSIs. We introduce HistoKernel, a novel Maximum Mean Discrepancy (MMD) kernel that measures distributional similarity between WSIs for enhanced prediction performance on downstream prediction tasks. Our comprehensive analysis demonstrates HistoKernel's effectiveness across various machine learning tasks, including retrieval (n = 9,362), drug sensitivity regression (n = 551), point mutation classification (n = 3,419), and survival analysis (n = 2,291), outperforming existing deep learning methods. Additionally, HistoKernel seamlessly integrates multi-modal data and offers a novel perturbation-based method for patch-level explainability. This work pioneers the use of kernel-based methods for WSI-level predictive modeling, opening new avenues for research. Code is available at https://github.com/pkeller00/HistoKernel.
- Abstract(参考訳): 計算病理学(CPath)における機械学習は、複数ギガピクセルの全体スライド画像(WSI)からパッチレベルの予測を集約し、生存予測や薬物効果予測といった重要なタスクのためのWSIレベルの予測スコアを生成する。
しかし、現在のメソッドは、WSI内のパッチセット間の分散的な違いを明示的に特徴づけるものではない。
我々は、下流予測タスクにおける予測性能を向上させるために、WSI間の分布類似性を測定する新しい最大平均離散性(MMD)カーネルであるHistoKernelを紹介する。
包括的分析により、検索(n = 9,362)、薬物感受性回帰(n = 551)、点突然変異分類(n = 3,419)、生存分析(n = 2,291)など、機械学習タスクにおけるHistoKernelの有効性が示された。
さらに、HistoKernelはマルチモーダルデータをシームレスに統合し、パッチレベルの説明可能性のための新しい摂動に基づく方法を提供する。
この研究は、WSIレベルの予測モデリングのためのカーネルベースの手法の使用の先駆者であり、研究のための新しい道を開いた。
コードはhttps://github.com/pkeller00/HistoKernelで入手できる。
関連論文リスト
- High-dimensional prediction for count response via sparse exponential weights [0.0]
本稿では,高次元カウントデータ予測のための新しい確率的機械学習フレームワークを提案する。
重要な貢献は、データ予測をカウントするために調整された新しいリスク尺度であり、PAC-ベイズ境界を用いた予測リスクの理論的な保証である。
以上の結果から,非漸近性オラクルの不等式や,空間性に関する事前知識を伴わない速度-最適予測誤差が示唆された。
論文 参考訳(メタデータ) (2024-10-20T12:45:42Z) - Skeleton2vec: A Self-supervised Learning Framework with Contextualized
Target Representations for Skeleton Sequence [56.092059713922744]
予測対象として高レベルな文脈化機能を使用することで,優れた性能が得られることを示す。
具体的には、シンプルで効率的な3D行動表現学習フレームワークであるSkeleton2vecを提案する。
提案するSkeleton2vecは,従来の手法より優れ,最先端の結果が得られる。
論文 参考訳(メタデータ) (2024-01-01T12:08:35Z) - Neural Operator Variational Inference based on Regularized Stein
Discrepancy for Deep Gaussian Processes [23.87733307119697]
本稿では,深いガウス過程に対するニューラル演算子変分推論(NOVI)を提案する。
NOVIは、ニューラルジェネレータを使用してサンプリング装置を取得し、生成された分布と真の後部の間のL2空間における正規化スタインの離散性を最小化する。
提案手法が提案するバイアスは定数で発散を乗算することで制御可能であることを示す。
論文 参考訳(メタデータ) (2023-09-22T06:56:35Z) - Maximum Mean Discrepancy Kernels for Predictive and Prognostic Modeling
of Whole Slide Images [1.418033127602866]
コンピュータ病理学では、患者から採取したデジタルスキャンされた組織サンプルの全体スライド画像(WSI)は、サイズが複数ギガピクセルである。
カーネル最大化平均離散性(MMD)分析に基づく新しい戦略を,WSI間のペアの類似性を決定するために検討する。
この研究は、計算病理学における予測的および予測的タスクにWSIレベルのカーネルを適用するためのさらなる道を開くと信じている。
論文 参考訳(メタデータ) (2023-01-23T18:47:41Z) - Compound Batch Normalization for Long-tailed Image Classification [77.42829178064807]
本稿では,ガウス混合に基づく複合バッチ正規化法を提案する。
機能空間をより包括的にモデル化し、ヘッドクラスの優位性を減らすことができる。
提案手法は,画像分類における既存の手法よりも優れている。
論文 参考訳(メタデータ) (2022-12-02T07:31:39Z) - Hierarchical Transformer for Survival Prediction Using Multimodality
Whole Slide Images and Genomics [63.76637479503006]
下流タスクのためのギガピクセルレベルのスライド病理画像(WSI)の良質な表現を学習することが重要である。
本稿では,病理画像と対応する遺伝子間の階層的マッピングを学習する階層型マルチモーダルトランスフォーマーフレームワークを提案する。
より優れたWSI表現能力を維持しながら、ベンチマーク手法と比較してGPUリソースが少ないアーキテクチャです。
論文 参考訳(メタデータ) (2022-11-29T23:47:56Z) - Efficient and Differentiable Conformal Prediction with General Function
Classes [96.74055810115456]
本稿では,複数の学習可能なパラメータに対する共形予測の一般化を提案する。
本研究は, クラス内において, ほぼ有効な人口被覆率, ほぼ最適効率を実現していることを示す。
実験の結果,提案アルゴリズムは有効な予測セットを学習し,効率を著しく向上できることがわかった。
論文 参考訳(メタデータ) (2022-02-22T18:37:23Z) - Learning Cross-Scale Prediction for Efficient Neural Video Compression [30.051859347293856]
低レイテンシモードのUVGデータセット上のsRGB PSNRの観点から、最新のコーディング標準であるH.266/VVCと競合する最初のニューラルビデオを示す。
そこで我々は,より効率的な動き補償を実現する,新しいクロススケール予測モジュールを提案する。
論文 参考訳(メタデータ) (2021-12-26T03:12:17Z) - CC-Cert: A Probabilistic Approach to Certify General Robustness of
Neural Networks [58.29502185344086]
安全クリティカルな機械学習アプリケーションでは、モデルを敵の攻撃から守ることが不可欠である。
意味的に意味のある入力変換に対して、ディープラーニングモデルの証明可能な保証を提供することが重要である。
我々はChernoff-Cramer境界に基づく新しい普遍確率的証明手法を提案する。
論文 参考訳(メタデータ) (2021-09-22T12:46:04Z) - MetaKernel: Learning Variational Random Features with Limited Labels [120.90737681252594]
少数の注釈付きサンプルから学習し、新しいタスクでうまく一般化できるという根本的かつ困難な問題に、少数のショットラーニングが対処します。
マルチショット学習のためのランダムなフーリエ機能を備えたメタラーニングカーネルをMeta Kernelと呼びます。
論文 参考訳(メタデータ) (2021-05-08T21:24:09Z) - Unsupervised learning of disentangled representations in deep restricted
kernel machines with orthogonality constraints [15.296955630621566]
Constr-DRKMは、非教師なしデータ表現の学習のためのディープカーネル手法である。
本研究では,不整合特徴学習における提案手法の有効性を定量的に評価する。
論文 参考訳(メタデータ) (2020-11-25T11:40:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。