Physics-Informed GNN for non-linear constrained optimization: PINCO a solver for the AC-optimal power flow
- URL: http://arxiv.org/abs/2410.04818v1
- Date: Mon, 7 Oct 2024 08:08:36 GMT
- Title: Physics-Informed GNN for non-linear constrained optimization: PINCO a solver for the AC-optimal power flow
- Authors: Anna Varbella, Damien Briens, Blazhe Gjorgiev, Giuseppe Alessio D'Inverno, Giovanni Sansavini,
- Abstract summary: This work explores a physics-informed graph neural network, PINCO, to solve the AC-OPF.
PINCO generalizes effectively across a diverse set of loading conditions in the power system.
It can function both as a solver and as a hybrid universal function approximator.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The energy transition is driving the integration of large shares of intermittent power sources in the electric power grid. Therefore, addressing the AC optimal power flow (AC-OPF) effectively becomes increasingly essential. The AC-OPF, which is a fundamental optimization problem in power systems, must be solved more frequently to ensure the safe and cost-effective operation of power systems. Due to its non-linear nature, AC-OPF is often solved in its linearized form, despite inherent inaccuracies. Non-linear solvers, such as the interior point method, are typically employed to solve the full OPF problem. However, these iterative methods may not converge for large systems and do not guarantee global optimality. This work explores a physics-informed graph neural network, PINCO, to solve the AC-OPF. We demonstrate that this method provides accurate solutions in a fraction of the computational time when compared to the established non-linear programming solvers. Remarkably, PINCO generalizes effectively across a diverse set of loading conditions in the power system. We show that our method can solve the AC-OPF without violating inequality constraints. Furthermore, it can function both as a solver and as a hybrid universal function approximator. Moreover, the approach can be easily adapted to different power systems with minimal adjustments to the hyperparameters, including systems with multiple generators at each bus. Overall, this work demonstrates an advancement in the field of power system optimization to tackle the challenges of the energy transition. The code and data utilized in this paper are available at https://anonymous.4open.science/r/opf_pinn_iclr-B83E/.
Related papers
- Beyond the Neural Fog: Interpretable Learning for AC Optimal Power Flow [0.0]
AC optimal power flow (AC-OPF) problem is essential for power system operations.
In this paper, we introduce a novel neural-based approach that merges simplicity and interpretability.
arXiv Detail & Related papers (2024-07-30T14:38:43Z) - GP CC-OPF: Gaussian Process based optimization tool for
Chance-Constrained Optimal Power Flow [54.94701604030199]
The Gaussian Process (GP) based Chance-Constrained Optimal Flow (CC-OPF) is an open-source Python code for economic dispatch (ED) problem in power grids.
The developed tool presents a novel data-driven approach based on the CC-OP model for solving the large regression problem with a trade-off between complexity and accuracy.
arXiv Detail & Related papers (2023-02-16T17:59:06Z) - Proximal Policy Optimization with Graph Neural Networks for Optimal Power Flow [4.27638925658716]
Graph Neural Networks (GNN) has allowed the natural use of Machine Learning (ML) algorithms on data.
Deep Reinforcement Learning (DRL) is known for its powerful capability to solve complex decision-making problems.
We propose an architecture that learns how to solve the problem and that is at the same time able to unseen scenarios.
arXiv Detail & Related papers (2022-12-23T17:00:00Z) - Unsupervised Deep Learning for AC Optimal Power Flow via Lagrangian
Duality [3.412750324146571]
AC optimal power flow is a fundamental optimization problem in power system analysis.
Deep learning based approaches have gained intensive attention to conduct the time-consuming training process offline.
This paper proposes an end-to-end unsupervised learning based framework for AC-OPF.
arXiv Detail & Related papers (2022-12-07T22:26:45Z) - Unsupervised Optimal Power Flow Using Graph Neural Networks [172.33624307594158]
We use a graph neural network to learn a nonlinear parametrization between the power demanded and the corresponding allocation.
We show through simulations that the use of GNNs in this unsupervised learning context leads to solutions comparable to standard solvers.
arXiv Detail & Related papers (2022-10-17T17:30:09Z) - Data-Driven Chance Constrained AC-OPF using Hybrid Sparse Gaussian
Processes [57.70237375696411]
The paper proposes a fast data-driven setup that uses the sparse and hybrid Gaussian processes (GP) framework to model the power flow equations with input uncertainty.
We advocate the efficiency of the proposed approach by a numerical study over multiple IEEE test cases showing up to two times faster and more accurate solutions.
arXiv Detail & Related papers (2022-08-30T09:27:59Z) - Data-Driven Stochastic AC-OPF using Gaussian Processes [54.94701604030199]
Integrating a significant amount of renewables into a power grid is probably the most a way to reduce carbon emissions from power grids slow down climate change.
This paper presents an alternative data-driven approach based on the AC power flow equations that can incorporate uncertainty inputs.
The GP approach learns a simple yet non-constrained data-driven approach to close this gap to the AC power flow equations.
arXiv Detail & Related papers (2022-07-21T23:02:35Z) - Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural
Networks [52.32646357164739]
We propose a deep neural network (DNN) to solve the solutions of the optimal power flow (ACOPF)
The proposed SIDNN is compatible with a broad range of OPF schemes.
It can be seamlessly integrated in other learning-to-OPF schemes.
arXiv Detail & Related papers (2021-03-27T00:45:23Z) - Learning to Solve AC Optimal Power Flow by Differentiating through
Holomorphic Embeddings [17.338923885534193]
Alternating current optimal power flow (AC-OPF) is one of the fundamental problems in power systems operation.
In this paper, we show efficient strategies that circumvent this problem by differentiating through the operations of a power flow solver.
We report a 12x increase in speed and a 40% increase in robustness compared to a traditional solver.
arXiv Detail & Related papers (2020-12-16T18:23:51Z) - High-Fidelity Machine Learning Approximations of Large-Scale Optimal
Power Flow [49.2540510330407]
AC-OPF is a key building block in many power system applications.
Motivated by increased penetration of renewable sources, this paper explores deep learning to deliver efficient approximations to the AC-OPF.
arXiv Detail & Related papers (2020-06-29T20:22:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.