FLASH: Federated Learning-Based LLMs for Advanced Query Processing in Social Networks through RAG
- URL: http://arxiv.org/abs/2408.05242v1
- Date: Tue, 6 Aug 2024 22:28:13 GMT
- Title: FLASH: Federated Learning-Based LLMs for Advanced Query Processing in Social Networks through RAG
- Authors: Sai Puppala, Ismail Hossain, Md Jahangir Alam, Sajedul Talukder,
- Abstract summary: The system is designed to seamlessly aggregate and curate diverse social media data sources.
The GPT model is trained on decentralized data sources to ensure privacy and security.
- Score: 5.5997926295092295
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Our paper introduces a novel approach to social network information retrieval and user engagement through a personalized chatbot system empowered by Federated Learning GPT. The system is designed to seamlessly aggregate and curate diverse social media data sources, including user posts, multimedia content, and trending news. Leveraging Federated Learning techniques, the GPT model is trained on decentralized data sources to ensure privacy and security while providing personalized insights and recommendations. Users interact with the chatbot through an intuitive interface, accessing tailored information and real-time updates on social media trends and user-generated content. The system's innovative architecture enables efficient processing of input files, parsing and enriching text data with metadata, and generating relevant questions and answers using advanced language models. By facilitating interactive access to a wealth of social network information, this personalized chatbot system represents a significant advancement in social media communication and knowledge dissemination.
Related papers
- QiBERT -- Classifying Online Conversations Messages with BERT as a Feature [0.0]
This paper aims to use data obtained from online social conversations in Portuguese schools to observe behavioural trends.
This project used the state of the art (SoA) Machine Learning (ML) algorithms and methods, through BERT based models to classify if utterances are in or out of the debate subject.
arXiv Detail & Related papers (2024-09-09T11:38:06Z) - Do We Trust What They Say or What They Do? A Multimodal User Embedding Provides Personalized Explanations [35.77028281332307]
We propose Contribution-Aware Multimodal User Embedding (CAMUE) for social networks.
We show that our approach can provide personalized explainable predictions, automatically mitigating the impact of unreliable information.
Our work paves the way for more explainable, reliable, and effective social media user embedding.
arXiv Detail & Related papers (2024-09-04T02:17:32Z) - Constraining Participation: Affordances of Feedback Features in Interfaces to Large Language Models [49.74265453289855]
Large language models (LLMs) are now accessible to anyone with a computer, a web browser, and an internet connection via browser-based interfaces.
This paper examines the affordances of interactive feedback features in ChatGPT's interface, analysing how they shape user input and participation in iteration.
arXiv Detail & Related papers (2024-08-27T13:50:37Z) - SocFedGPT: Federated GPT-based Adaptive Content Filtering System Leveraging User Interactions in Social Networks [5.5997926295092295]
We introduce personalized GPT and Context-based Social Media LLM models, utilizing federated learning for privacy and security.
Four client entities receive a base GPT-2 model and locally collected social media data, with federated aggregation ensuring up-to-date model maintenance.
A quantifying social engagement approach, coupled with matrix factorization techniques, facilitates personalized content suggestions in real-time.
arXiv Detail & Related papers (2024-08-07T20:05:26Z) - Social Intelligence Data Infrastructure: Structuring the Present and Navigating the Future [59.78608958395464]
We build a Social AI Data Infrastructure, which consists of a comprehensive social AI taxonomy and a data library of 480 NLP datasets.
Our infrastructure allows us to analyze existing dataset efforts, and also evaluate language models' performance in different social intelligence aspects.
We show there is a need for multifaceted datasets, increased diversity in language and culture, more long-tailed social situations, and more interactive data in future social intelligence data efforts.
arXiv Detail & Related papers (2024-02-28T00:22:42Z) - Informed Meta-Learning [55.2480439325792]
Meta-learning and informed ML stand out as two approaches for incorporating prior knowledge into ML pipelines.
We formalise a hybrid paradigm, informed meta-learning, facilitating the incorporation of priors from unstructured knowledge representations.
We demonstrate the potential benefits of informed meta-learning in improving data efficiency, robustness to observational noise and task distribution shifts.
arXiv Detail & Related papers (2024-02-25T15:08:37Z) - Social-LLM: Modeling User Behavior at Scale using Language Models and
Social Network Data [13.660150473547766]
We introduce a novel approach tailored for modeling social network data in user detection tasks.
Our method integrates localized social network interactions with the capabilities of large language models.
We conduct a thorough evaluation of our method across seven real-world social network datasets.
arXiv Detail & Related papers (2023-12-31T05:13:13Z) - An Efficient Federated Learning Framework for Training Semantic
Communication System [29.593406320684448]
Most semantic communication systems are built upon advanced deep learning models.
Due to privacy and security concerns, the transmission of data is restricted.
We introduce a mechanism to aggregate the global model from clients, called FedLol.
arXiv Detail & Related papers (2023-10-20T02:45:20Z) - MIDDAG: Where Does Our News Go? Investigating Information Diffusion via
Community-Level Information Pathways [114.42360191723469]
We present MIDDAG, an intuitive, interactive system that visualizes the information propagation paths on social media triggered by COVID-19-related news articles.
We construct communities among users and develop the propagation forecasting capability, enabling tracing and understanding of how information is disseminated at a higher level.
arXiv Detail & Related papers (2023-10-04T02:08:11Z) - Cross-Network Social User Embedding with Hybrid Differential Privacy
Guarantees [81.6471440778355]
We propose a Cross-network Social User Embedding framework, namely DP-CroSUE, to learn the comprehensive representations of users in a privacy-preserving way.
In particular, for each heterogeneous social network, we first introduce a hybrid differential privacy notion to capture the variation of privacy expectations for heterogeneous data types.
To further enhance user embeddings, a novel cross-network GCN embedding model is designed to transfer knowledge across networks through those aligned users.
arXiv Detail & Related papers (2022-09-04T06:22:37Z) - I Know Where You Are Coming From: On the Impact of Social Media Sources
on AI Model Performance [79.05613148641018]
We will study the performance of different machine learning models when being learned on multi-modal data from different social networks.
Our initial experimental results reveal that social network choice impacts the performance.
arXiv Detail & Related papers (2020-02-05T11:10:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.