論文の概要: The impact of internal variability on benchmarking deep learning climate emulators
- arxiv url: http://arxiv.org/abs/2408.05288v1
- Date: Fri, 9 Aug 2024 18:17:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 19:44:18.026914
- Title: The impact of internal variability on benchmarking deep learning climate emulators
- Title(参考訳): 内部変動がディープラーニング気候エミュレータのベンチマークに及ぼす影響
- Authors: Björn Lütjens, Raffaele Ferrari, Duncan Watson-Parris, Noelle Selin,
- Abstract要約: 完全複雑地球系モデル(ESM)は計算に非常に高価であり、複数の放出経路の気候結果の探索に使用を制限している。
ESMを近似するより効率的なエミュレータは、放射を気候データセットに直接マッピングすることができる。
我々は、データ駆動型気候エミュレーションの一般的なベンチマークであるClimateBenchを調査し、ディープラーニングベースのエミュレータが現在、最高のパフォーマンスを実現している。
- 参考スコア(独自算出の注目度): 2.3342885570554652
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Full-complexity Earth system models (ESMs) are computationally very expensive, limiting their use in exploring the climate outcomes of multiple emission pathways. More efficient emulators that approximate ESMs can directly map emissions onto climate outcomes, and benchmarks are being used to evaluate their accuracy on standardized tasks and datasets. We investigate a popular benchmark in data-driven climate emulation, ClimateBench, on which deep learning-based emulators are currently achieving the best performance. We implement a linear regression-based emulator, akin to pattern scaling, and find that it outperforms the incumbent 100M-parameter deep learning foundation model, ClimaX, on 3 out of 4 regionally-resolved surface-level climate variables. While emulating surface temperature is expected to be predominantly linear, this result is surprising for emulating precipitation. We identify that this outcome is a result of high levels of internal variability in the benchmark targets. To address internal variability, we update the benchmark targets with ensemble averages from the MPI-ESM1.2-LR model that contain 50 instead of 3 climate simulations per emission pathway. Using the new targets, we show that linear pattern scaling continues to be more accurate on temperature, but can be outperformed by a deep learning-based model for emulating precipitation. We publish our code, data, and an interactive tutorial at github.com/blutjens/climate-emulator.
- Abstract(参考訳): 完全複雑地球系モデル(ESM)は計算に非常に高価であり、複数の放出経路の気候結果の探索に使用を制限している。
ESMを近似したより効率的なエミュレータは、排出ガスを直接気候の結果にマッピングすることができ、ベンチマークを使用して標準化されたタスクやデータセットの精度を評価する。
我々は、データ駆動型気候エミュレーションの一般的なベンチマークであるClimateBenchを調査し、ディープラーニングベースのエミュレータが現在、最高のパフォーマンスを実現している。
パターンスケーリングに類似した線形回帰型エミュレータを実装し,現生100Mパラメータ深層学習基盤モデルであるClimaXを4つの局所分解層気候変数のうち3つで上回った。
表面温度のエミュレートは、主に線形であることが期待されているが、この結果は降水のエミュレーションには驚きである。
この結果は,ベンチマーク対象における内部変動のレベルが高い結果であることが確認された。
内部の変動に対処するため,放射経路当たりの3つの気候シミュレーションではなく,50個を含むMPI-ESM1.2-LRモデルを用いて,ベンチマークターゲットをアンサンブル平均で更新する。
新しいターゲットを用いて、線形パターンのスケーリングは温度でより正確であり続けるが、降水をエミュレートする深層学習モデルにより性能が向上することを示した。
github.com/blutjens/climate-emulator.comでコード、データ、インタラクティブなチュートリアルを公開しています。
関連論文リスト
- Uncertainty-enabled machine learning for emulation of regional sea-level change caused by the Antarctic Ice Sheet [0.8130739369606821]
沿岸部27箇所で海面変動のニューラルネットワークエミュレータを構築した。
ニューラルネットワークエミュレータは,ベースライン機械学習エミュレータと競合する精度を持つことを示す。
論文 参考訳(メタデータ) (2024-06-21T18:27:09Z) - NAVSIM: Data-Driven Non-Reactive Autonomous Vehicle Simulation and Benchmarking [65.24988062003096]
我々は,視覚に基づく運転ポリシーをベンチマークするフレームワークであるNAVSIMを提案する。
我々のシミュレーションは非反応性であり、評価された政策と環境は互いに影響を与えない。
NAVSIMはCVPR 2024で開催され、143チームが433のエントリーを提出し、いくつかの新たな洞察を得た。
論文 参考訳(メタデータ) (2024-06-21T17:59:02Z) - Sim2Real for Environmental Neural Processes [20.850715955359593]
我々は「Sim2Real」の分析を行い、再分析と観測データの微調整を事前学習する。
Sim2Realは、天気予報や気象モニタリングのためのより正確なモデルを可能にする。
論文 参考訳(メタデータ) (2023-10-30T18:49:06Z) - Finding the Perfect Fit: Applying Regression Models to ClimateBench v1.0 [0.0]
ClimateBenchは、気候データ用に設計された機械学習エミュレータのパフォーマンスを評価するためのベンチマークデータセットである。
本研究は、上記のデータセットを用いて非線形回帰モデルを評価することに焦点を当てる。
論文 参考訳(メタデータ) (2023-08-23T01:08:01Z) - FaIRGP: A Bayesian Energy Balance Model for Surface Temperatures
Emulation [13.745581787463962]
本稿では,エネルギー収支モデルの物理温度応答方程式を満たすデータ駆動エミュレータであるFaIRGPを紹介する。
本稿では,FaIRGPを用いて大気上層放射力の推定値を得る方法について述べる。
この研究が、気候エミュレーションにおけるデータ駆動手法の採用の拡大に寄与することを期待している。
論文 参考訳(メタデータ) (2023-07-14T08:43:36Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - Deep Learning Based Cloud Cover Parameterization for ICON [55.49957005291674]
我々は,実地域およびグローバルICONシミュレーションに基づいて,粗粒度データを用いたNNベースのクラウドカバーパラメータ化を訓練する。
グローバルに訓練されたNNは、地域シミュレーションのサブグリッドスケールのクラウドカバーを再現することができる。
我々は,コラムベースNNがグローバルから局所的な粗粒データに完全に一般化できない理由として,特定の湿度と雲氷上の過剰なエンハンシスを同定する。
論文 参考訳(メタデータ) (2021-12-21T16:10:45Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - DeepClimGAN: A High-Resolution Climate Data Generator [60.59639064716545]
地球系モデル(ESM)は、気候変動シナリオの将来の予測を生成するためにしばしば用いられる。
妥協として、エミュレータはかなり安価であるが、ESMの複雑さを全て備えているわけではない。
本稿では, ESMエミュレータとして, 条件付き生成逆数ネットワーク(GAN)の使用を実証する。
論文 参考訳(メタデータ) (2020-11-23T20:13:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。