Separability Lindblad equation for dynamical open-system entanglement
- URL: http://arxiv.org/abs/2412.08724v1
- Date: Wed, 11 Dec 2024 19:00:08 GMT
- Title: Separability Lindblad equation for dynamical open-system entanglement
- Authors: Julien Pinske, Laura Ares, Benjamin Hinrichs, Martin Kolb, Jan Sperling,
- Abstract summary: We put forth a new class of nonlinear quantum master equations in Lindblad form that unambiguously identify dynamical entanglement in open quantum systems.
This separability Lindblad equation restricts quantum trajectories to classically correlated states only.
Our results allow to benchmark the engineering of entangled states through dissipation.
- Score: 0.0
- License:
- Abstract: Providing entanglement for the design of quantum technologies in the presence of noise constitutes today's main challenge in quantum information science. A framework is required that assesses the build-up of entanglement in realistic settings. In this work, we put forth a new class of nonlinear quantum master equations in Lindblad form that unambiguously identify dynamical entanglement in open quantum systems via deviations from a separable evolution. This separability Lindblad equation restricts quantum trajectories to classically correlated states only. Unlike many conventional approaches, here the entangling capabilities of a process are not characterized by input-output relations, but separability is imposed at each instant of time. We solve these equations for crucial examples, thereby quantifying the dynamical impact of entanglement in non-equilibrium scenarios. Our results allow to benchmark the engineering of entangled states through dissipation. The separability Lindblad equation provides a unique path to characterizing quantum correlations caused by arbitrary system-bath interactions, specifically tailored for the noisy intermediate-scale quantum era.
Related papers
- Restricted Monte Carlo wave function method and Lindblad equation for identifying entangling open-quantum-system dynamics [0.0]
Our algorithm performs tangential projections onto the set of separable states, leading to classically correlated quantum trajectories.
Applying this method is equivalent to solving the nonlinear master equation in Lindblad form introduced in citePAH24 for two-qubit systems.
We identify the impact of dynamical entanglement in open systems by applying our approach to several correlated decay processes.
arXiv Detail & Related papers (2024-12-11T19:05:34Z) - Entangled quantum trajectories in relativistic systems [0.0]
A key challenge to be overcome is to consider entanglement between two or more quantum particles in different inertial frames.
We derive a class of Euler--Lagrange equations under the constraint of a non-entangling behavior.
We solve our equations for interacting particles in a Klein--Gordon-type setting, thereby quantifying the dynamic and relativistic impact of entanglement.
arXiv Detail & Related papers (2024-10-08T12:49:44Z) - Lindblad quantum dynamics from correlation functions of classical spin chains [0.0]
We build on the connection for magnetization transport in the spin-1/2 XXZ chain with and without integrability-breaking perturbations.
We study the question whether the time evolution of the open quantum system can be described on the basis of classical correlation functions.
arXiv Detail & Related papers (2024-06-18T08:36:47Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Quantum jumps in driven-dissipative disordered many-body systems [0.874967598360817]
We introduce a deformation of the Lindblad master equation that interpolates between the standard Lindblad and the no-jump non-Hermitian dynamics of open quantum systems.
We show that reducing the number of quantum jumps, achievable through realistic postselection protocols, can promote the emergence of the localized phase.
arXiv Detail & Related papers (2023-12-28T19:00:00Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Exact Quantum Dynamics, Shortcuts to Adiabaticity, and Quantum Quenches
in Strongly-Correlated Many-Body Systems: The Time-Dependent Jastrow Ansatz [3.0616044531734192]
We introduce a generalization of the Jastrow ansatz for time-dependent wavefunctions.
It provides an efficient and exact description of the time-evolution of a variety of systems exhibiting strong correlations.
arXiv Detail & Related papers (2022-10-26T18:00:03Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Unification of Random Dynamical Decoupling and the Quantum Zeno Effect [68.8204255655161]
We show that the system dynamics under random dynamical decoupling converges to a unitary with a decoupling error that characteristically depends on the convergence speed of the Zeno limit.
This reveals a unification of the random dynamical decoupling and the quantum Zeno effect.
arXiv Detail & Related papers (2021-12-08T11:41:38Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.