Solving the Lindblad equation with methods from computational fluid dynamics
- URL: http://arxiv.org/abs/2410.10925v1
- Date: Mon, 14 Oct 2024 14:24:23 GMT
- Title: Solving the Lindblad equation with methods from computational fluid dynamics
- Authors: Jan Rais, Adrian Koenigstein, Niklas Zorbach, Carsten Greiner,
- Abstract summary: Liouvillian dynamics describes the evolution of a density operator in closed quantum systems.
One extension towards open quantum systems is provided by the Lindblad equation.
Main challenge is that analytical solutions for the Lindblad equation are only obtained for harmonic system potentials or two-level systems.
- Score: 0.0
- License:
- Abstract: Liouvillian dynamics describes the evolution of a density operator in closed quantum systems. One extension towards open quantum systems is provided by the Lindblad equation. It is applied to various systems and energy regimes in solid state physics as well as also in nuclear physics. A main challenge is that analytical solutions for the Lindblad equation are only obtained for harmonic system potentials or two-level systems. For other setups one has to rely on numerical methods. In this work, we propose to use a method from computational fluid dynamics, the Kurganov-Tadmor central (finite volume) scheme, to numerically solve the Lindblad equation in position-space representation. We will argue, that this method is advantageous in terms of the efficiency concerning initial conditions, discretization, and stability. On the one hand, we study, the applicability of this scheme by performing benchmark tests. Thereby we compare numerical results to analytic solutions and discuss aspects like boundary conditions, initial values, conserved quantities, and computational efficiency. On the other hand, we also comment on new qualitative insights to the Lindblad equation from its reformulation in terms of an advection-diffusion equation with source/sink terms.
Related papers
- Full- and low-rank exponential Euler integrators for the Lindblad equation [2.5676905118007407]
The Lindblad equation is a widely used quantum master equation to model the dynamical evolution of open quantum systems.
Full-rank exponential Euler and low-rank exponential Euler are developed for approximating the Lindblad equation that preserve positivity and trace unconditionally.
arXiv Detail & Related papers (2024-08-24T15:11:28Z) - Lindbladian reverse engineering for general non-equilibrium steady states: A scalable null-space approach [49.1574468325115]
We introduce a method for reconstructing the corresponding Lindbaldian master equation given any target NESS.
The kernel (null-space) of the correlation matrix corresponds to Lindbladian solutions.
We illustrate the method in different systems, ranging from bosonic Gaussian to dissipative-driven collective spins.
arXiv Detail & Related papers (2024-08-09T19:00:18Z) - On optimization of coherent and incoherent controls for two-level
quantum systems [77.34726150561087]
This article considers some control problems for closed and open two-level quantum systems.
The closed system's dynamics is governed by the Schr"odinger equation with coherent control.
The open system's dynamics is governed by the Gorini-Kossakowski-Sudarshan-Lindblad master equation.
arXiv Detail & Related papers (2022-05-05T09:08:03Z) - Lindblad master equations for quantum systems coupled to dissipative
bosonic modes [0.0]
We derive Lindblad master equations for a subsystem whose dynamics is coupled to bosonic modes.
We apply this formalism to the dissipative Dicke model and derive a Lindblad master equation for the atomic spins.
This master equation accurately predicts the Dicke phase transition and gives the correct steady state.
arXiv Detail & Related papers (2022-03-07T11:21:48Z) - Non-diagonal Lindblad master equations in quantum reservoir engineering [0.0]
We present a set of dynamical equations for the first and second moments of canonical variables for bosonic and fermionic linear Gaussian systems.
Our method is efficient and allows one to obtain analytical solutions for the steady state.
Our exploration yields a surprising byproduct: the Duan criterion, commonly applied to bosonic systems for verification of entanglement, is found to be equally valid for fermionic systems.
arXiv Detail & Related papers (2021-11-07T09:55:04Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Method of spectral Green functions in driven open quantum dynamics [77.34726150561087]
A novel method based on spectral Green functions is presented for the simulation of driven open quantum dynamics.
The formalism shows remarkable analogies to the use of Green functions in quantum field theory.
The method dramatically reduces computational cost compared with simulations based on solving the full master equation.
arXiv Detail & Related papers (2020-06-04T09:41:08Z) - Universal Lindblad equation for open quantum systems [0.0]
We develop a Markovian master equation in the Lindblad form for studying quantum many-body systems.
The validity of the master equation is based entirely on properties of the bath and the system-bath coupling.
We show how our method can be applied to static or driven quantum many-body systems.
arXiv Detail & Related papers (2020-04-03T11:07:40Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.