論文の概要: SHIELD: LLM-Driven Schema Induction for Predictive Analytics in EV Battery Supply Chain Disruptions
- arxiv url: http://arxiv.org/abs/2408.05357v2
- Date: Mon, 21 Oct 2024 21:17:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 12:00:35.993412
- Title: SHIELD: LLM-Driven Schema Induction for Predictive Analytics in EV Battery Supply Chain Disruptions
- Title(参考訳): ShiELD: 電気自動車のバッテリサプライチェーン破壊における予測分析のためのLCM駆動型スキーマ誘導
- Authors: Zhi-Qi Cheng, Yifei Dong, Aike Shi, Wei Liu, Yuzhi Hu, Jason O'Connor, Alexander G. Hauptmann, Kate S. Whitefoot,
- Abstract要約: ShiELDは、大型言語モデル(LLM)とEVバッテリサプライチェーンリスクアセスメントのためのドメインの専門知識を組み合わせたものだ。
365の資料(2022-2023)から12,070段落を評価したところ、ShiELDは破壊予測においてベースラインGCNとLLM+prompt法より優れていた。
- 参考スコア(独自算出の注目度): 52.90276059116822
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The electric vehicle (EV) battery supply chain's vulnerability to disruptions necessitates advanced predictive analytics. We present SHIELD (Schema-based Hierarchical Induction for EV supply chain Disruption), a system integrating Large Language Models (LLMs) with domain expertise for EV battery supply chain risk assessment. SHIELD combines: (1) LLM-driven schema learning to construct a comprehensive knowledge library, (2) a disruption analysis system utilizing fine-tuned language models for event extraction, multi-dimensional similarity matching for schema matching, and Graph Convolutional Networks (GCNs) with logical constraints for prediction, and (3) an interactive interface for visualizing results and incorporating expert feedback to enhance decision-making. Evaluated on 12,070 paragraphs from 365 sources (2022-2023), SHIELD outperforms baseline GCNs and LLM+prompt methods (e.g., GPT-4o) in disruption prediction. These results demonstrate SHIELD's effectiveness in combining LLM capabilities with domain expertise for enhanced supply chain risk assessment.
- Abstract(参考訳): 電気自動車(EV)バッテリーサプライチェーンの破壊に対する脆弱性は、高度な予測分析を必要とする。
本稿では,大言語モデル(LLM)とEVバッテリサプライチェーンリスク評価分野の専門知識を統合するシステムであるShiELD(Schema-based Hierarchical induction for EV supply chain Disruption)を紹介する。
ShiELD は,(1) 総合的な知識ライブラリを構築するための LLM 駆動型スキーマ学習,(2) イベント抽出のための微調整言語モデル,スキーママッチングのための多次元類似性マッチング,およびグラフ畳み込みネットワーク(GCN) を論理的制約付きで組み合わせ,(3) 結果を可視化し,専門家のフィードバックを取り入れて意思決定を強化する,インタラクティブなインタフェースを備える。
365の資料(2022-2023)から12,070段落を評価したところ、ShiELDは破壊予測においてベースラインGCNとLLM+prompt法(例:GPT-4o)より優れていた。
これらの結果は,LLM能力とドメイン知識を併用したサプライチェーンリスク評価の有効性を示すものである。
関連論文リスト
- ECM: A Unified Electronic Circuit Model for Explaining the Emergence of In-Context Learning and Chain-of-Thought in Large Language Model [64.22300168242221]
In-Context Learning (ICL) と Chain-of-Thought (CoT) は、大規模言語モデルにおいて出現する能力である。
ICLとCoTをよりよく理解するための電子回路モデル(ECM)を提案する。
ECMは, 様々なプロンプト戦略において, LLMの性能を効果的に予測し, 説明する。
論文 参考訳(メタデータ) (2025-02-05T16:22:33Z) - SenseRAG: Constructing Environmental Knowledge Bases with Proactive Querying for LLM-Based Autonomous Driving [10.041702058108482]
本研究では,大規模言語モデル(LLM)の文脈推論機能を活用することにより,自律運転(AD)における状況認識の高度化の必要性に対処する。
厳密なラベルベースのアノテーションに依存する従来の認識システムとは異なり、リアルタイムのマルチモーダルセンサーデータを統一されたLLM対応の知識ベースに統合する。
実世界のV2Xデータセットを用いた実験結果は、知覚と予測性能の大幅な改善を示す。
論文 参考訳(メタデータ) (2025-01-07T05:15:46Z) - OCEAN: Offline Chain-of-thought Evaluation and Alignment in Large Language Models [68.17018458283651]
本研究は,LLMのチェーン・オブ・思想能力のオフライン評価に焦点をあてる。
我々は知識グラフ(例えばWikidata5m)を使って、生成された思考の連鎖に対するフィードバックを提供する。
提案手法に基づいてLCMを最適化する方法を示す。
論文 参考訳(メタデータ) (2024-10-31T07:48:44Z) - EF-LLM: Energy Forecasting LLM with AI-assisted Automation, Enhanced Sparse Prediction, Hallucination Detection [8.540308127679985]
本稿では,時系列予測のためのドメイン知識と時間データを統合するEnergy Forecasting Large Language Model (EF-LLM)を提案する。
EF-LLMの人間とAIのインタラクション能力は、タスクの予測におけるエントリー障壁を低くし、さらなる専門家の関与の必要性を減らす。
我々は、負荷、太陽光発電、風力発電予測のエネルギー予測シナリオで成功している。
論文 参考訳(メタデータ) (2024-10-30T11:22:37Z) - Attribute Controlled Fine-tuning for Large Language Models: A Case Study on Detoxification [76.14641982122696]
本稿では,属性制御付き大規模言語モデル(LLM)の制約学習スキーマを提案する。
提案手法は, ベンチマーク上での競合性能と毒性検出タスクを達成しながら, 不適切な応答を少ないLCMに導出することを示す。
論文 参考訳(メタデータ) (2024-10-07T23:38:58Z) - Large Language Models can be Strong Self-Detoxifiers [82.6594169242814]
SASA(Self-disciplined Autoregressive Smpling)は、大規模言語モデル(LLM)の毒性低減のための軽量制御復号アルゴリズムである。
SASAは、自己回帰サンプリング戦略を調整することにより、電流出力のマージンを追跡し、有害な部分空間から世代を分離する。
Llama-3.1-Instruct (8B), Llama-2 (7B), GPT2-L model with the RealToxicityPrompts, BOLD, and AttaQ benchmarks。
論文 参考訳(メタデータ) (2024-10-04T17:45:15Z) - The Misclassification Likelihood Matrix: Some Classes Are More Likely To Be Misclassified Than Others [1.654278807602897]
本研究では、分散シフト下でのニューラルネットワーク予測の信頼性を定量化するための新しいツールとして、MLM(Misclassification Likelihood Matrix)を紹介した。
この研究の意味は、画像の分類を超えて、自動運転車などの自動運転システムで進行中の応用に及んでいる。
論文 参考訳(メタデータ) (2024-07-10T16:43:14Z) - Predicting Fault-Ride-Through Probability of Inverter-Dominated Power Grids using Machine Learning [0.0]
インバータの大きな共有で将来の電力グリッドの動的安定性を予測する機械学習の可能性を分析する。
本研究では,合成電力グリッドの故障発生確率を,MLモデルで正確に予測できることを実証する。
また,MLモデルがIEEE-96テストシステムに一般化されることも示す。
論文 参考訳(メタデータ) (2024-06-13T08:28:14Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
大きな言語モデル(LLM)は、いくつかの変換タスクにまたがって素晴らしいパフォーマンスを示している。
しかし,大規模クラスタ資源を効率よく利用してLCMを開発することは容易ではない。
我々は,GPUデータセンタAcmeから収集した6ヶ月のLDM開発ワークロードの詳細な評価を行った。
論文 参考訳(メタデータ) (2024-03-12T13:31:14Z) - Can Large Language Models assist in Hazard Analysis? [1.599072005190786]
大規模言語モデル(LLM)は、目覚ましい自然言語処理と生成能力を示している。
本稿では,LLMを安全クリティカルシステムのハザード解析に組み込む可能性について検討する。
論文 参考訳(メタデータ) (2023-03-25T19:43:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。