論文の概要: EF-LLM: Energy Forecasting LLM with AI-assisted Automation, Enhanced Sparse Prediction, Hallucination Detection
- arxiv url: http://arxiv.org/abs/2411.00852v2
- Date: Tue, 24 Dec 2024 03:24:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:53:16.367853
- Title: EF-LLM: Energy Forecasting LLM with AI-assisted Automation, Enhanced Sparse Prediction, Hallucination Detection
- Title(参考訳): EF-LLM:AI支援自動化によるエネルギー予測LLM, スパース予測の強化, 幻覚検出
- Authors: Zihang Qiu, Chaojie Li, Zhongyang Wang, Renyou Xie, Borui Zhang, Huadong Mo, Guo Chen, Zhaoyang Dong,
- Abstract要約: 本稿では,時系列予測のためのドメイン知識と時間データを統合するEnergy Forecasting Large Language Model (EF-LLM)を提案する。
EF-LLMの人間とAIのインタラクション能力は、タスクの予測におけるエントリー障壁を低くし、さらなる専門家の関与の必要性を減らす。
我々は、負荷、太陽光発電、風力発電予測のエネルギー予測シナリオで成功している。
- 参考スコア(独自算出の注目度): 8.540308127679985
- License:
- Abstract: Accurate prediction helps to achieve supply-demand balance in energy systems, supporting decision-making and scheduling. Traditional models, lacking AI-assisted automation, rely on experts, incur high costs, and struggle with sparse data prediction. To address these challenges, we propose the Energy Forecasting Large Language Model (EF-LLM), which integrates domain knowledge and temporal data for time-series forecasting, supporting both pre-forecast operations and post-forecast decision-support. EF-LLM's human-AI interaction capabilities lower the entry barrier in forecasting tasks, reducing the need for extra expert involvement. To achieve this, we propose a continual learning approach with updatable LoRA and a multi-channel architecture for aligning heterogeneous multimodal data, enabling EF-LLM to continually learn heterogeneous multimodal knowledge. In addition, EF-LLM enables accurate predictions under sparse data conditions through its ability to process multimodal data. We propose Fusion Parameter-Efficient Fine-Tuning (F-PEFT) method to effectively leverage both time-series data and text for this purpose. EF-LLM is also the first energy-specific LLM to detect hallucinations and quantify their occurrence rate, achieved via multi-task learning, semantic similarity analysis, and ANOVA. We have achieved success in energy prediction scenarios for load, photovoltaic, and wind power forecast.
- Abstract(参考訳): 正確な予測は、エネルギーシステムの需給バランスを達成するのに役立ち、意思決定とスケジューリングをサポートする。
AIによる自動化を欠いた従来のモデルは、専門家に依存し、高いコストを発生させ、スパースデータの予測に苦労する。
これらの課題に対処するために,時系列予測のためのドメイン知識と時間データを統合したEnergy Forecasting Large Language Model (EF-LLM)を提案する。
EF-LLMの人間とAIのインタラクション能力は、タスクの予測におけるエントリー障壁を低くし、さらなる専門家の関与の必要性を減らす。
そこで本稿では, 異種マルチモーダルデータの整合性を実現するために, 更新可能なLoRAとマルチチャネルアーキテクチャを併用した連続学習手法を提案する。
さらに、EF-LLMはマルチモーダルデータを処理することで、スパースデータ条件下での正確な予測を可能にする。
本研究では,この目的のために時系列データとテキストの両方を効果的に活用するために,F-PEFT法を提案する。
また、EF-LLMは幻覚を検知し、その発生率を多タスク学習、意味的類似性分析、およびANOVAによって定量化する最初のエネルギー固有LLMである。
我々は、負荷、太陽光発電、風力発電予測のエネルギー予測シナリオで成功している。
関連論文リスト
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
論文 参考訳(メタデータ) (2024-11-24T04:56:45Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
コンテキスト is Key" (CiK) は、数値データを多種多様なテキストコンテキストと組み合わせた予測ベンチマークである。
我々は,統計モデル,時系列基礎モデル,LLMに基づく予測モデルなど,さまざまなアプローチを評価する。
提案手法は,提案するベンチマークにおいて,他の試験手法よりも優れる簡易かつ効果的なLCMプロンプト法である。
論文 参考訳(メタデータ) (2024-10-24T17:56:08Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - STLLM-DF: A Spatial-Temporal Large Language Model with Diffusion for Enhanced Multi-Mode Traffic System Forecasting [32.943673568195315]
マルチタスク輸送予測を改善するため,時空間大言語モデル(STLLM-DF)を提案する。
DDPMの堅牢なdenoising機能により、ノイズの多い入力から基盤となるデータパターンを復元することができる。
STLLM-DFは既存のモデルより一貫して優れており,MAEでは平均2.40%,RMSEでは4.50%,MAPEでは1.51%の削減を実現している。
論文 参考訳(メタデータ) (2024-09-08T15:29:27Z) - The Price of Prompting: Profiling Energy Use in Large Language Models Inference [5.254805405012678]
本稿では,大規模言語モデル推論プロセスにおいて消費されるエネルギーを監視し,分析するフレームワークであるMELODIを紹介する。
MELODIを使用して生成されたデータセットは、幅広いLLMデプロイメントフレームワーク、複数の言語モデル、広範なプロンプトデータセットを含んでいる。
その結果,エネルギー効率の相違が指摘され,持続可能対策の最適化と導入の十分な範囲が示唆された。
論文 参考訳(メタデータ) (2024-07-04T12:16:28Z) - Not All Attention is Needed: Parameter and Computation Efficient Transfer Learning for Multi-modal Large Language Models [73.48675708831328]
MLLM(Multi-modal Large Language Models)のための新しいパラメータと計算効率のチューニング手法を提案する。
The Efficient Attention Skipping (EAS) method evaluate the attention redundancy and skips the less important MHAs to speed up inference。
実験により、EASは高い性能とパラメータ効率を維持するだけでなく、推論速度を大幅に高速化することが示された。
論文 参考訳(メタデータ) (2024-03-22T14:20:34Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
我々は,地球規模の気象変動に対するAIに基づくデータ同化モデル,すなわちAdasを提案する。
我々は,アダスが地球観測を同化して高品質な分析を行い,長期にわたって安定して運用できることを実証した。
この手法を現実のシナリオに適用するのは,私たちが初めてです。
論文 参考訳(メタデータ) (2023-12-18T09:05:28Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
ローカルデータのFIMI(FIlling the MIssing)部分を活用することにより,これらの課題に対処する,AIを活用した創発的なフェデレーション学習を提案する。
実験の結果,FIMIはデバイス側エネルギーの最大50%を節約し,目標とするグローバルテスト精度を達成できることがわかった。
論文 参考訳(メタデータ) (2023-10-21T12:07:04Z) - MATNet: Multi-Level Fusion Transformer-Based Model for Day-Ahead PV
Generation Forecasting [0.47518865271427785]
MATNetはPV発電予測のための新しい自己アテンショントランスフォーマーベースのアーキテクチャである。
これは、AIパラダイムとPV発電に関する以前の物理的知識を組み合わせたハイブリッドアプローチで構成されている。
その結果,提案アーキテクチャは現在の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2023-06-17T14:03:09Z) - Self-learning locally-optimal hypertuning using maximum entropy, and
comparison of machine learning approaches for estimating fatigue life in
composite materials [0.0]
疲労損傷を予測するための最大エントロピーの原理に基づくML近傍近似アルゴリズムを開発した。
予測は、他のMLアルゴリズムと同様、高いレベルの精度を達成する。
論文 参考訳(メタデータ) (2022-10-19T12:20:07Z) - Automated Few-Shot Time Series Forecasting based on Bi-level Programming [5.760976250387322]
本稿では,バイレベルプログラミングの観点から,数発の学習パイプラインの最適設計を自動化するBiLO-Auto-TSF/MLフレームワークを開発する。
提案したBiLO-Auto-TSF/MLフレームワークの有効性を総合的に検証した。
論文 参考訳(メタデータ) (2022-03-07T12:15:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。