HoME: Hierarchy of Multi-Gate Experts for Multi-Task Learning at Kuaishou
- URL: http://arxiv.org/abs/2408.05430v1
- Date: Sat, 10 Aug 2024 04:25:48 GMT
- Title: HoME: Hierarchy of Multi-Gate Experts for Multi-Task Learning at Kuaishou
- Authors: Xu Wang, Jiangxia Cao, Zhiyi Fu, Kun Gai, Guorui Zhou,
- Abstract summary: We present the practical problems and the lessons learned at short-video services from Kuaishou.
In industry, a widely-used multi-task framework is the Mixture-of-Experts (MoE) paradigm.
- Score: 19.113649341888532
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present the practical problems and the lessons learned at short-video services from Kuaishou. In industry, a widely-used multi-task framework is the Mixture-of-Experts (MoE) paradigm, which always introduces some shared and specific experts for each task and then uses gate networks to measure related experts' contributions. Although the MoE achieves remarkable improvements, we still observe three anomalies that seriously affect model performances in our iteration: (1) Expert Collapse: We found that experts' output distributions are significantly different, and some experts have over 90% zero activations with ReLU, making it hard for gate networks to assign fair weights to balance experts. (2) Expert Degradation: Ideally, the shared-expert aims to provide predictive information for all tasks simultaneously. Nevertheless, we find that some shared-experts are occupied by only one task, which indicates that shared-experts lost their ability but degenerated into some specific-experts. (3) Expert Underfitting: In our services, we have dozens of behavior tasks that need to be predicted, but we find that some data-sparse prediction tasks tend to ignore their specific-experts and assign large weights to shared-experts. The reason might be that the shared-experts can perceive more gradient updates and knowledge from dense tasks, while specific-experts easily fall into underfitting due to their sparse behaviors. Motivated by those observations, we propose HoME to achieve a simple, efficient and balanced MoE system for multi-task learning.
Related papers
- Beyond Parameter Count: Implicit Bias in Soft Mixture of Experts [44.09546603624385]
We introduce a notion of expert specialization for Soft MoE.
We show that when there are many small experts, the architecture is implicitly biased in a fashion that allows us to efficiently approximate the specialized expert subset.
arXiv Detail & Related papers (2024-09-02T00:39:00Z) - Learning More Generalized Experts by Merging Experts in Mixture-of-Experts [0.5221459608786241]
We show that incorporating a shared layer in a mixture-of-experts can lead to performance degradation.
We merge the two most frequently selected experts and update the least frequently selected expert using the combination of experts.
Our algorithm enhances transfer learning and mitigates catastrophic forgetting when applied to multi-domain task incremental learning.
arXiv Detail & Related papers (2024-05-19T11:55:48Z) - Generalization Error Analysis for Sparse Mixture-of-Experts: A Preliminary Study [65.11303133775857]
Mixture-of-Experts (MoE) computation amalgamates predictions from several specialized sub-models (referred to as experts)
Sparse MoE selectively engages only a limited number, or even just one expert, significantly reducing overhead while empirically preserving, and sometimes even enhancing, performance.
arXiv Detail & Related papers (2024-03-26T05:48:02Z) - HyperMoE: Towards Better Mixture of Experts via Transferring Among Experts [25.504602853436047]
Mixture of Experts (MoE) for language models has been proven effective in augmenting the capacity of models by dynamically routing each input token to a specific subset of experts for processing.
We propose HyperMoE, a novel MoE framework built upon Hypernetworks.
This framework integrates the computational processes of MoE with the concept of knowledge transferring in multi-task learning.
arXiv Detail & Related papers (2024-02-20T02:09:55Z) - MoDE: A Mixture-of-Experts Model with Mutual Distillation among the
Experts [15.535613294871487]
We propose a method called Mixture-of-Distilled-Expert (MoDE)
MoDE applies moderate mutual distillation among experts to enable each expert to pick up more features learned by other experts.
arXiv Detail & Related papers (2024-01-31T03:52:32Z) - Inverse Reinforcement Learning with Sub-optimal Experts [56.553106680769474]
We study the theoretical properties of the class of reward functions that are compatible with a given set of experts.
Our results show that the presence of multiple sub-optimal experts can significantly shrink the set of compatible rewards.
We analyze a uniform sampling algorithm that results in being minimax optimal whenever the sub-optimal experts' performance level is sufficiently close to the one of the optimal agent.
arXiv Detail & Related papers (2024-01-08T12:39:25Z) - Merge, Then Compress: Demystify Efficient SMoE with Hints from Its Routing Policy [84.11508381847929]
Sparsely activated Mixture-of-Experts (SMoE) has shown promise to scale up the learning capacity of neural networks.
We propose M-SMoE, which leverages routing statistics to guide expert merging.
Our MC-SMoE achieves up to 80% memory and a 20% FLOPs reduction, with virtually no loss in performance.
arXiv Detail & Related papers (2023-10-02T16:51:32Z) - Pre-training Multi-task Contrastive Learning Models for Scientific
Literature Understanding [52.723297744257536]
Pre-trained language models (LMs) have shown effectiveness in scientific literature understanding tasks.
We propose a multi-task contrastive learning framework, SciMult, to facilitate common knowledge sharing across different literature understanding tasks.
arXiv Detail & Related papers (2023-05-23T16:47:22Z) - Learning from Guided Play: Improving Exploration for Adversarial
Imitation Learning with Simple Auxiliary Tasks [8.320969283401233]
We show that the standard, naive approach to exploration can manifest as a suboptimal local maximum.
We present Learning from Guided Play (LfGP), a framework in which we leverage expert demonstrations of multiple exploratory, auxiliary tasks.
arXiv Detail & Related papers (2022-12-30T20:38:54Z) - Mod-Squad: Designing Mixture of Experts As Modular Multi-Task Learners [74.92558307689265]
We propose Mod-Squad, a new model that is Modularized into groups of experts (a 'Squad')
We optimize this matching process during the training of a single model.
Experiments on the Taskonomy dataset with 13 vision tasks and the PASCAL-Context dataset with 5 vision tasks show the superiority of our approach.
arXiv Detail & Related papers (2022-12-15T18:59:52Z) - MoEC: Mixture of Expert Clusters [93.63738535295866]
Sparsely Mixture of Experts (MoE) has received great interest due to its promising scaling capability with affordable computational overhead.
MoE converts dense layers into sparse experts, and utilizes a gated routing network to make experts conditionally activated.
However, as the number of experts grows, MoE with outrageous parameters suffers from overfitting and sparse data allocation.
arXiv Detail & Related papers (2022-07-19T06:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.