Merge, Then Compress: Demystify Efficient SMoE with Hints from Its Routing Policy
- URL: http://arxiv.org/abs/2310.01334v2
- Date: Thu, 14 Mar 2024 11:01:15 GMT
- Title: Merge, Then Compress: Demystify Efficient SMoE with Hints from Its Routing Policy
- Authors: Pingzhi Li, Zhenyu Zhang, Prateek Yadav, Yi-Lin Sung, Yu Cheng, Mohit Bansal, Tianlong Chen,
- Abstract summary: Sparsely activated Mixture-of-Experts (SMoE) has shown promise to scale up the learning capacity of neural networks.
We propose M-SMoE, which leverages routing statistics to guide expert merging.
Our MC-SMoE achieves up to 80% memory and a 20% FLOPs reduction, with virtually no loss in performance.
- Score: 84.11508381847929
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sparsely activated Mixture-of-Experts (SMoE) has shown promise to scale up the learning capacity of neural networks, however, they have issues like (a) High Memory Usage, due to duplication of the network layers into multiple copies as experts; and (b) Redundancy in Experts, as common learning-based routing policies suffer from representational collapse. Therefore, vanilla SMoE models are memory inefficient and non-scalable, especially for resource-constrained downstream scenarios. In this paper, we ask: Can we craft a compact SMoE model by consolidating expert information? What is the best recipe to merge multiple experts into fewer but more knowledgeable experts? Our pilot investigation reveals that conventional model merging methods fail to be effective in such expert merging for SMoE. The potential reasons are: (1) redundant information overshadows critical experts; (2) appropriate neuron permutation for each expert is missing to bring all of them in alignment. To address this, we propose M-SMoE, which leverages routing statistics to guide expert merging. Specifically, it starts with neuron permutation alignment for experts; then, dominant experts and their "group members" are formed; lastly, every expert group is merged into a single expert by utilizing each expert's activation frequency as their weight for merging, thus diminishing the impact of insignificant experts. Moreover, we observed that our proposed merging promotes a low dimensionality in the merged expert's weight space, naturally paving the way for additional compression. Hence, our final method, MC-SMoE (i.e., Merge, then Compress SMoE), further decomposes the merged experts into low-rank and structural sparse alternatives. Extensive experiments across 8 benchmarks validate the effectiveness of MC-SMoE. For instance, our MC-SMoE achieves up to 80% memory and a 20% FLOPs reduction, with virtually no loss in performance.
Related papers
- MoE++: Accelerating Mixture-of-Experts Methods with Zero-Computation Experts [63.67734699877724]
MoE++ is a general and heterogeneous MoE framework that integrates both Feed-Forward Network(FFN) and zero-computation experts.
MoE++ achieves better performance while delivering 1.1-2.1x expert forward throughput compared to a vanilla MoE model of the same size.
arXiv Detail & Related papers (2024-10-09T18:01:27Z) - Beyond Parameter Count: Implicit Bias in Soft Mixture of Experts [44.09546603624385]
We introduce a notion of expert specialization for Soft MoE.
We show that when there are many small experts, the architecture is implicitly biased in a fashion that allows us to efficiently approximate the specialized expert subset.
arXiv Detail & Related papers (2024-09-02T00:39:00Z) - BAM! Just Like That: Simple and Efficient Parameter Upcycling for Mixture of Experts [41.83123857437985]
Training MoEs from scratch in a large-scale regime is prohibitively expensive.
We propose BAM (Branch-Attend-Mix), a simple yet effective method that addresses this shortcoming.
Our experiments on seed models ranging from 590 million to 2 billion parameters demonstrate that BAM surpasses baselines in both perplexity and downstream task performance.
arXiv Detail & Related papers (2024-08-15T17:19:12Z) - Generalization Error Analysis for Sparse Mixture-of-Experts: A Preliminary Study [65.11303133775857]
Mixture-of-Experts (MoE) computation amalgamates predictions from several specialized sub-models (referred to as experts)
Sparse MoE selectively engages only a limited number, or even just one expert, significantly reducing overhead while empirically preserving, and sometimes even enhancing, performance.
arXiv Detail & Related papers (2024-03-26T05:48:02Z) - Multilinear Mixture of Experts: Scalable Expert Specialization through Factorization [51.98792406392873]
Mixture of Experts (MoE) provides a powerful way to decompose dense layers into smaller, modular computations.
A major challenge lies in the computational cost of scaling the number of experts high enough to achieve fine-grained specialization.
We propose the Multilinear Mixture of Experts ($mu$MoE) layer to address this, focusing on vision models.
arXiv Detail & Related papers (2024-02-19T21:20:22Z) - Omni-SMoLA: Boosting Generalist Multimodal Models with Soft Mixture of Low-rank Experts [74.40198929049959]
Large multi-modal models (LMMs) exhibit remarkable performance across numerous tasks.
generalist LMMs often suffer from performance degradation when tuned over a large collection of tasks.
We propose Omni-SMoLA, an architecture that uses the Soft MoE approach to mix many multimodal low rank experts.
arXiv Detail & Related papers (2023-12-01T23:04:27Z) - MoEC: Mixture of Expert Clusters [93.63738535295866]
Sparsely Mixture of Experts (MoE) has received great interest due to its promising scaling capability with affordable computational overhead.
MoE converts dense layers into sparse experts, and utilizes a gated routing network to make experts conditionally activated.
However, as the number of experts grows, MoE with outrageous parameters suffers from overfitting and sparse data allocation.
arXiv Detail & Related papers (2022-07-19T06:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.