Generalization Error Analysis for Sparse Mixture-of-Experts: A Preliminary Study
- URL: http://arxiv.org/abs/2403.17404v1
- Date: Tue, 26 Mar 2024 05:48:02 GMT
- Title: Generalization Error Analysis for Sparse Mixture-of-Experts: A Preliminary Study
- Authors: Jinze Zhao, Peihao Wang, Zhangyang Wang,
- Abstract summary: Mixture-of-Experts (MoE) computation amalgamates predictions from several specialized sub-models (referred to as experts)
Sparse MoE selectively engages only a limited number, or even just one expert, significantly reducing overhead while empirically preserving, and sometimes even enhancing, performance.
- Score: 65.11303133775857
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mixture-of-Experts (MoE) represents an ensemble methodology that amalgamates predictions from several specialized sub-models (referred to as experts). This fusion is accomplished through a router mechanism, dynamically assigning weights to each expert's contribution based on the input data. Conventional MoE mechanisms select all available experts, incurring substantial computational costs. In contrast, Sparse Mixture-of-Experts (Sparse MoE) selectively engages only a limited number, or even just one expert, significantly reducing computation overhead while empirically preserving, and sometimes even enhancing, performance. Despite its wide-ranging applications and these advantageous characteristics, MoE's theoretical underpinnings have remained elusive. In this paper, we embark on an exploration of Sparse MoE's generalization error concerning various critical factors. Specifically, we investigate the impact of the number of data samples, the total number of experts, the sparsity in expert selection, the complexity of the routing mechanism, and the complexity of individual experts. Our analysis sheds light on \textit{how \textbf{sparsity} contributes to the MoE's generalization}, offering insights from the perspective of classical learning theory.
Related papers
- Beyond Parameter Count: Implicit Bias in Soft Mixture of Experts [44.09546603624385]
We introduce a notion of expert specialization for Soft MoE.
We show that when there are many small experts, the architecture is implicitly biased in a fashion that allows us to efficiently approximate the specialized expert subset.
arXiv Detail & Related papers (2024-09-02T00:39:00Z) - HyperMoE: Towards Better Mixture of Experts via Transferring Among Experts [25.504602853436047]
Mixture of Experts (MoE) for language models has been proven effective in augmenting the capacity of models by dynamically routing each input token to a specific subset of experts for processing.
We propose HyperMoE, a novel MoE framework built upon Hypernetworks.
This framework integrates the computational processes of MoE with the concept of knowledge transferring in multi-task learning.
arXiv Detail & Related papers (2024-02-20T02:09:55Z) - Multilinear Mixture of Experts: Scalable Expert Specialization through Factorization [51.98792406392873]
Mixture of Experts (MoE) provides a powerful way to decompose dense layers into smaller, modular computations.
A major challenge lies in the computational cost of scaling the number of experts high enough to achieve fine-grained specialization.
We propose the Multilinear Mixture of Experts ($mu$MoE) layer to address this, focusing on vision models.
arXiv Detail & Related papers (2024-02-19T21:20:22Z) - On Least Square Estimation in Softmax Gating Mixture of Experts [78.3687645289918]
We investigate the performance of the least squares estimators (LSE) under a deterministic MoE model.
We establish a condition called strong identifiability to characterize the convergence behavior of various types of expert functions.
Our findings have important practical implications for expert selection.
arXiv Detail & Related papers (2024-02-05T12:31:18Z) - Enhancing Molecular Property Prediction via Mixture of Collaborative
Experts [23.388085838279405]
We introduce the GNN-MoCE architecture to address data scarcity and imbalance in MPP.
It employs the Mixture of Collaborative Experts (MoCE) as predictors, exploiting task commonalities.
Our model demonstrates superior performance over traditional methods on 24 MPP datasets.
arXiv Detail & Related papers (2023-12-06T05:02:10Z) - Omni-SMoLA: Boosting Generalist Multimodal Models with Soft Mixture of Low-rank Experts [74.40198929049959]
Large multi-modal models (LMMs) exhibit remarkable performance across numerous tasks.
generalist LMMs often suffer from performance degradation when tuned over a large collection of tasks.
We propose Omni-SMoLA, an architecture that uses the Soft MoE approach to mix many multimodal low rank experts.
arXiv Detail & Related papers (2023-12-01T23:04:27Z) - Merge, Then Compress: Demystify Efficient SMoE with Hints from Its Routing Policy [84.11508381847929]
Sparsely activated Mixture-of-Experts (SMoE) has shown promise to scale up the learning capacity of neural networks.
We propose M-SMoE, which leverages routing statistics to guide expert merging.
Our MC-SMoE achieves up to 80% memory and a 20% FLOPs reduction, with virtually no loss in performance.
arXiv Detail & Related papers (2023-10-02T16:51:32Z) - MoEC: Mixture of Expert Clusters [93.63738535295866]
Sparsely Mixture of Experts (MoE) has received great interest due to its promising scaling capability with affordable computational overhead.
MoE converts dense layers into sparse experts, and utilizes a gated routing network to make experts conditionally activated.
However, as the number of experts grows, MoE with outrageous parameters suffers from overfitting and sparse data allocation.
arXiv Detail & Related papers (2022-07-19T06:09:55Z) - Sparsely-gated Mixture-of-Expert Layers for CNN Interpretability [3.021134753248103]
Sparsely-gated Mixture of Expert (MoE) layers have been successfully applied for scaling large transformers.
In this work, we apply sparse MoE layers to CNNs for computer vision tasks and analyze the resulting effect on model interpretability.
arXiv Detail & Related papers (2022-04-22T09:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.